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ABSTRACT
 

Andrew Connor Puett: Advancing the Clinical Potential of Carbon Nanotube-enabled  
stationary 3D Mammography 

(Under the direction of Otto Zhou) 
 

Scope and purpose. 3D imaging has revolutionized medicine. Digital breast tomosynthesis 

(DBT), also recognized as 3D mammography, is a relatively recent example. stationary DBT 

(sDBT) is an experimental technology in which the single moving x-ray source of conventional 

DBT has been replaced by a fixed array of carbon nanotube (CNT)-enabled sources. Given the 

potential for a higher spatial and temporal resolution compared to commercially-available, 

moving-source DBT devices, it was hypothesized that sDBT would provide a valuable tool for 

breast imaging.  As such, the purpose of this work was to explore the clinical potential of sDBT. 

To accomplish this purpose, three broad Aims were set forth: (1) study the challenges of scatter 

and artifact with sDBT, (2) assess the performance of sDBT relative to standard mammographic 

screening approaches, and (3) develop a synthetic mammography capability for sDBT. 

Throughout the work, developing image processing approaches to maximize the diagnostic value 

of the information presented to readers remained a specific goal. 

Data sources and methodology. Sitting at the intersection of development and clinical 

application, this work involved both basic experimentation and human study. Quantitative 

measures of image quality as well as reader preference and accuracy were used to assess the 

performance of sDBT. These studies imaged breast-mimicking phantoms, lumpectomy 

specimens, and human subjects on IRB-approved study protocols, often using standard 2D and 

conventional 3D mammography for reference.   
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Key findings. Characterizing scatter and artifact allowed the development of new processing 

approaches to improve image quality. Additionally, comparing the performance of sDBT to 

standard breast imaging technologies helped identify opportunities for improvement through 

processing. This line of research culminated in the incorporation of a synthetic mammography 

capability into sDBT, yielding images that have the potential to improve the diagnostic value of 

sDBT.  

Implications. This work advanced the evolution of CNT-enabled sDBT toward a viable clinical 

tool by incorporating key image processing functionality and characterizing the performance of 

sDBT relative to standard breast imaging techniques. The findings confirmed the clinical utility 

of sDBT while also suggesting promising paths for future research and development with this 

unique approach to breast imaging.  
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PREFACE 
 

Given the potential to identify illness earlier and more accurately through better imaging, 

research continues into new imaging technologies. At the University of North Carolina (UNC) at 

Chapel Hill, which has been my undergraduate and now graduate school home, I have had the 

opportunity to participate in some of these advances. As an undergraduate student in biomedical 

engineering, I received a Carol Lucas Scholarship, providing me the opportunity to work in an 

engineering lab. My research experience began with Dr. Paul Dayton. The entire team from post-

docs to graduate students included me in their projects. They taught me how to conduct basic 

research and analyze the results. I learned how to write scientific papers and present my findings 

as posters and talks, both on campus and at large scientific meetings. Through collaborations 

with other labs and interactions with physician-scientists, I also learned the excitement of 

translating research to the clinic. My years with this group changed my life, cementing my desire 

to pursue a dual MD-PhD degree. It was also during this time that I developed a fascination with 

nanotechnology, 3D imaging, and the computer processing that creates the 3D images displayed 

to readers.  

 As an MSTP-supported MD-PhD candidate, I was honored to stay at UNC for graduate 

school for two key reasons. First, the UNC School of Medicine offered an innovative approach 

to medical training, which allowed for the integration of research into a strong clinical 

experience. Second, I was aware of the commitment of the Joint UNC/NC State Biomedical 

Engineering Department to become a leader in medical imaging research. As both an 

undergraduate and a graduate student, I have certainly benefitted from the advanced technologies 
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and intellectual expertise of the scientists and clinicians brought together at UNC. During my 

first two medical school years, my interest turned to x-ray imaging, which continues to be the 

backbone of diagnostic medicine, and I joined the Applied Nanotechnology Laboratory for my 

PhD work in 2016.  

 By that time, over a decade of NIH-supported research under the direction of Drs. Otto 

Zhou and Jianping Lu had resulted in a revolutionary x-ray source using carbon nanotube (CNT) 

technology. The advantages of these fast and easily controllable x-ray sources for 3D imaging 

were clear, and the decision had been made to apply them to tomosynthesis, a form of limited-

angle 3D imaging. Collaboration with industry allowed a rapid translation of CNT-enabled 

tomosynthesis to the clinic, and IRB-approved protocols were developed for human studies 

under the supervision of Dr. Yueh Lee, an MD/PhD-trained translational radiologist.  

 This has proven to be an ideal environment to train as a clinician-scientist with my 

interests, allowing me to do basic research on the technology itself and the computer code that 

processes the images, while also learning how to conduct human studies. My research has 

focused on evaluating new tomosynthesis imaging systems and developing image processing 

algorithms to improve their utility. These experiences in basic and clinical research provided the 

foundation for NIH-funding to complete my dissertation project with an NRSA F30 grant (1 F30 

CA235892-01) entitled “Improved cancer screening with synthetic and stationary 3D 

mammography.” 
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CHAPTER 1: INTRODUCTION

 
1.1 Problem addressed in this work 
 
 Given its ability to identify pathology earlier and more accurately, three-dimensional 

(3D) imaging has revolutionized medicine. Digital breast tomosynthesis (DBT), now recognized 

clinically as 3D mammography, is a relatively recent example [Sechopoulos 2013a]. Since early 

detection is the key to surviving breast cancer [IARC Working Group 2016, Tabar 2015], 

effective screening and diagnostic imaging approaches are critical. As a result of studies 

demonstrating an improved diagnostic accuracy when standard two-dimensional (2D) and 3D 

mammography are combined, the use of DBT has been steadily increasing since its approval by 

the Food and Drug Administration (FDA) in 2011 [Gao 2017]. As with all commercially-

available 3D x-ray devices, DBT works by moving a standard x-ray source through space to 

collect a series of projection views at oblique angles relative to the target [Sechopoulos 2013a]. 

The information in these projection views is then combined mathematically using computer 

algorithms to generate a 3D image [Sechopoulos 2013b]. However, the need to move the x-ray 

source limits the temporal and spatial resolution of the imaging device and thus the quality of the 

images presented to the reader [Zheng 2019]. Stationary DBT (sDBT) is an experimental 

approach to breast imaging in which the single moving x-ray source has been replaced by a fixed 

array of rapidly-responsive and easily-coordinated carbon nanotube (CNT)-enabled sources 

[Qian 2012]. Hence, sDBT is less prone to the technical limitations of conventional, moving-

source DBT and thereby has the potential to present readers with images of greater diagnostic 

value. However, the novel geometry and performance characteristics of the sDBT system 
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introduce unique challenges with scatter, noise, and artifact. This dissertation work focused on 

understanding and addressing these challenges with a goal of exploring sDBT as a tool to 

improve breast imaging.  

1.2 Purpose of this work 
 
 Given its unique approach to collecting x-ray images, sDBT offers the possibility of 

generating images with a higher clinical value than the currently-available 3D mammography 

devices. It was therefore hypothesized that sDBT would provide a valuable breast imaging tool, 

leading to the stated purpose and title of this dissertation work - advancing the clinical potential 

of sDBT.  

1.3 Research questions asked in this work 
 
 In order to accomplish its goal of advancing the clinical potential of sDBT, three broad 

Aims were set forth for this work. Aim 1 involved understanding the challenges of scatter, noise, 

and artifact related to the unique geometry and operating characteristics of the sDBT system. 

Aim 2 assessed the performance of sDBT relative to standard 2D and conventional 3D 

mammography. Aim 3 sought to incorporate a synthetic mammography capability into the sDBT 

system, thereby completing the evolution of this experimental technology to a viable clinical 

tool. Throughout the project, a key question was constantly asked and studied: Could image 

processing approaches be developed to improve the diagnostic value of the images that the sDBT 

system was generating? In this way, the Aims proved to be complementary, as the findings from 

each influenced ongoing study of the others.  

1.4 Methodologies used to address the questions asked in this work 
 
 The scope of this project, as reflected in its purpose and three Aims (see 1.2 Purpose of 

this work and 1.3 Research questions asked in this work), required a broad range of experimental 
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designs. The methodologies ranged from highly-controlled basic research to human studies and 

included the imaging of breast-mimicking phantoms, lumpectomy specimens, and patients on 

IRB-approved study protocols (see Chapter 3: Methodology).  In large part, this work involved 

determining the value of the information contained in images generated by sDBT, typically using 

standard 2D and 3D breast imaging technologies as references for comparison. Many different 

and previously-validated approaches were used to measure image quality and diagnostic value. 

These included (1) direct measures of feature properties in the image, such as contrast and signal 

intensity, (2) objective calculations of feature visibility using detectability indices, adapted to the 

unique questions raised by the novel sDBT approach to image acquisition, as well as (3) 

subjective measures of reader preference. When feasible, the diagnostic accuracy of readers 

interpreting sDBT images was also determined.   

1.5  Rationale and significance of this work 
 
 Early detection is the key to surviving breast cancer [IARC Working Group 2016, Tabar 

2015]. As such, research continues to improve the imaging technologies used to screen for and 

evaluate breast lesions [Krupinski 2019]. CNT-enabled sDBT is an example of this advancing 

technology [Qian 2012]. Given the fact that pre-clinical testing has demonstrated the potential 

for a high spatial and temporal resolution [Calliste 2017], this work sought to explore the clinical 

potential of sDBT, with a goal of maximizing the value of the information presented to readers in 

sDBT images through improved image processing. It culminated in the incorporation of a 

synthetic mammography capability into the sDBT system. As a result, this work is significant for 

several reasons: 

1. Since future studies comparing sDBT to standard 2D and conventional 3D mammography will 

almost certainly require the ability to generate a synthetic mammogram, the results of this work 
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are critical for the ongoing clinical research of this novel technology, which has the potential to 

improve both the detection and diagnostic evaluation of breast cancer. 

2. Stationary tomosynthesis is being tested across a broad range of clinical applications. In 

addition to breast imaging, other promising niches include dental [Inscoe 2018, Puett 2018c], 

musculoskeletal [Inscoe 2020b], chest [Hartman 2016, Lee 2018, Gunnell 2019], and head 

[Spronk 2020, Luo 2020] imaging. The work presented in this dissertation focuses on breast 

imaging. However, the issues of scatter, noise, and artifact were actually studied across this 

spectrum of imaging tasks, with each anatomic environment introducing unique challenges. For 

example, artifacts are prominent when tomosynthesis is used to image targets containing highly-

attenuating features, perhaps best exemplified by dental imaging, given the presence of bone, 

teeth, and frequently metal. Similarly, scatter significantly degrades the quality of chest imaging. 

Experience with stationary tomosynthesis over this broad range of application has included both 

pre-clinical experimentation as well as preliminary patient testing (see 2.3.2 Carbon nanotube-

enabled x-ray source arrays and stationary tomosynthesis). This experience has contributed to 

the overall understanding of the performance of this novel technology as well as the development 

of key image processing tools, which will prove useful as stationary tomosynthesis continues to 

be explored at the clinical level for many different imaging tasks. As an example, see 

APPENDIX: Developing synthetic dental radiography. In other words, the findings from this 

work reflect a foundation of knowledge, applicable not only to breast imaging but also to 

stationary tomosynthesis in general. 

3. This work includes a comprehensive comparison of stationary tomosynthesis to standard 

imaging approaches, including 2D full field digital mammography and commercially-available 

3D mammography. As such, the findings provide useful insights to guide future research and 
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development, in terms of both the technology itself as well as the image processing approaches 

that display its information to readers. The tendency for imaging technology and processing to 

evolve together, especially as it relates to the sDBT system, is discussed in detail in Chapter 5: 

Analysis and Synthesis. 

1.6  Researcher’s role and assumptions during this work 
 
 The work presented in this dissertation is built on a foundation of basic research laid 

down over the past two decades in the Applied Nanotechnology Laboratory under the guidance 

of Drs. Otto Zhou and Jianping Lu.  During this time, a large team of technicians, students, and 

post-doctoral fellows collaborating with industry, had (1) developed a CNT-enabled cathode 

capable of supporting x-ray production sufficient for human imaging [Calderon-Colon 2009], (2) 

conceived, designed, and then built stationary digital tomosynthesis devices around arrays of 

CNT-enabled x-ray sources [Qian 2009, Shan 2015], and (3) optimized the performance of these 

novel devices in pre-clinical testing [Tucker 2013]. Additionally, core image processing code 

customized to the unique geometry of stationary tomosynthesis was developed to generate the 

tomosynthesis images [Wu 2015]. It was at this point of transition from development to 

application that I joined the lab in 2016. My research has been determined by the assumptions 

and discoveries of those before me, as I have continued to study sDBT under the guidance of this 

team that invented and developed it.  

1.7  Organization of this dissertation 
 
 This dissertation presents work at the intersection of basic experimentation and the 

clinical application of a novel imaging technology. Hence, clinical context is highlighted 

throughout, emphasizing the issues in patient care that have guided the research. In Chapter 2: 

Literature Review, the impact of breast cancer in the early 21st century and the potential for 
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advances in imaging technology, especially 3D mammography, to improve outcomes with this 

disease are reviewed. Next, the unique imaging approach of CNT-enabled sDBT is explained. 

This explanation highlights the potential advantages offered by this experimental technology 

over the currently-available 3D mammography devices while also identifying problematic issues 

that affect the quality of the sDBT images displayed to readers. Since the development of 

processing to improve the diagnostic value of sDBT images was a major focus of this work, in-

depth reviews of image quality and the image processing chain that generates the displayed 

sDBT images are provided. Given the scope of this dissertation, many different study designs 

were utilized (see 1.4 Methodologies used to address the questions asked in this work), ranging 

from benchtop experimentation to human trials. The details of this broad research approach are 

provided in Chapter 3: Methodology. Chapter 4: Findings organizes the results of this work in 

terms of its three broad Aims: (1) understand the challenges of scatter, noise, and artifact with 

sDBT, (2) assess the performance of sDBT relative to currently-available 2D and 3D 

mammography technologies, and (3) incorporate a synthetic mammography capability into 

sDBT. In Chapter 5: Analysis and Synthesis, the implications of the findings from this work 

are reviewed in the context of 3D mammography in general, emphasizing how technology and 

image processing evolve together, each influencing the advancement of the other. Using the 

findings from this work, Chapter 5 suggests directions for the ongoing development of sDBT. 

Chapter 6: Concluding with a Look to the Future summarizes the key concepts addressed 

throughout this work by looking into the future of sDBT. It considers potential diagnostic 

applications that would take advantage of the unique design of the sDBT system as well as 

advanced image processing approaches, for which sDBT may be well-suited. Finally, as noted 

throughout this dissertation, testing the sDBT system was carried out alongside the testing of 
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stationary tomosynthesis across a range of imaging tasks (see 1.5 Rationale and significance of 

this work and 2.3.2 Carbon nanotube-enabled x-ray source arrays and stationary tomosynthesis). 

The work presented herein was heavily influenced by this broad experience, and as an example, 

a brief summary of stationary tomosynthesis applied to dental imaging is provided (see 

APPENDIX: Developing synthetic dental radiography). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
 



www.manaraa.com

 

  8 

 

 

 

CHAPTER 2: LITERATURE REVIEW
 
2.1  Introduction to Chapter 2: Literature Review 
 
 Chapter 2: Literature Review places the work of this dissertation in both its technical and 

clinical contexts, providing a conceptual framework to understand the motivations that have 

guided the research as well as the potential implications of the findings. It begins with a 

discussion of the impact of breast cancer in the early 21st century and the potential for advances 

in imaging technology to improve outcomes with this disease. Next, the currently-available 

breast imaging technologies are reviewed, with an emphasis on 3D mammography, which is the 

clinical designation for digital breast tomosynthesis (DBT). The technical differences between 

the novel imaging approach of carbon nanotube (CNT)-enabled stationary DBT (sDBT) and 

conventional, moving-source DBT options are detailed. These differences provide the basis to 

understand the potential advantages of sDBT as well as the challenges that remain in 

implementing this unique technology at the clinical level. Many of these challenges can be 

addressed through improved image processing, and therefore, understanding the factors that 

decrease image quality as well as processing approaches to minimize them is important. Since 

image processing is a major focus throughout this work, the key processing steps required to 

generate sDBT images are reviewed. When linked together, these coding steps are referred to as 

the image processing chain, which in this work, eventually culminates in the generation of 

reconstructed 3D image stacks and 2D synthetic mammograms. Since improved synthetic 

mammography may be the key step by which 3D mammography replaces standard 2D 

mammography as the breast imaging tool of choice, the synthetic mammogram is discussed in 



www.manaraa.com

 

  9 

detail.  In summary, this chapter presents the background knowledge upon which this 

dissertation work was built, thereby providing a foundation for understanding the direction of the 

research as well as the value of the findings.  

2.2  Breast cancer and breast imaging technologies  
 
2.2.1  Breast cancer incidence and impact in the early 21st century 
 
 Breast cancer is by far the most common non-skin malignancy in women, accounting for 

more than the next two common cancer types (lung and colorectal) combined [Noone 2018]. On 

average, women in the United States have a greater than 10% lifetime risk of developing breast 

cancer [Noone 2018]. In 2019, over 250,000 Americans were diagnosed with invasive breast 

cancer, and more than 40,000 died from the disease [American Cancer Society 2019]. As with all 

malignancies, breast cancer is a general term that encompasses a variety of different neoplasia 

types across a wide spectrum of disease aggressiveness and prognosis, reflecting a complex mix 

of genetic, environmental, and socioeconomic factors [Jardines 2015]. Research continues to 

understand these influences and their impact on screening and diagnostic testing as well as 

treatment [IARC Working Group 2016]. Nevertheless, despite these many unknowns, there is at 

least a consensus that early detection through imaging is the key to improved outcomes for 

women with breast cancer [IARC Working Group 2016]. In part related to earlier detection 

through mammography, the 5-year survival rate for breast cancer has increased from about 69% 

in the period from 1975 - 1977 to about 88% between 2009 - 2015 [American Cancer Society 

2019]. 

2.2.2 The value and limitations of breast cancer screening by mammography 
 
 In the 1960s, general x-ray equipment was used to image breast tissue. However, during 

the 1970s, advances such as customized screen-film mammography devices and breast 
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compression were introduced, greatly improving the visualization of breast tissue [Gold 1990]. 

Dedicated mammography units staffed with radiologists specifically trained in the interpretation 

of the mammogram proliferated through the 1980s and 1990s, and at the turn of the century, 

digital mammography was introduced, with the landmark study confirming the value of digital 

mammography being published in 2005 [Pisano 2005]. Currently, digital mammography remains 

the breast screening tool of choice. The American College of Radiology (ACR) and Society of 

Breast Imaging recommend annual mammography for all women beginning at age 40 [Mainiero 

2017]. This recommendation is based on data demonstrating a significant reduction in breast 

cancer mortality with mammographic screening [Otto 2011, Hellquist 2011, Tabar 2011]. In fact, 

early detection of breast cancer through mammography reduces breast cancer mortality by 40%, 

since women with screen-detected cancers benefit more from therapy than do women with 

cancers detected clinically [IARC Working Group 2016]. The standard screening protocol 

involves obtaining two views, cranial-caudal (CC) and mediolateral-oblique (MLO), delivering 

an effective radiation dose of 0.44 mSv on average [Hendrick 2010]. To put this dose in 

perspective, Americans are exposed to approximately 3 mSv of environmental radiation annually 

[Hendrick 2010]. However, since mammograms collapse the 3D breast anatomy into a 2D 

image, the performance of standard 2D mammography as a screening tool is surprisingly poor. 

Concerning features can be obscured, resulting in missed or delayed diagnosis, and overlapping 

features can mimic pathology. As a result, the sensitivity of standard mammography for breast 

cancer detection averages around 85% [Lehman 2016], and the cumulative risk of call-back for a 

false positive finding after 10 years of screening is as high as 60% [Hubbard 2011]. Interpreting 

mammograms of “dense” tissue is especially problematic [Sprague 2016]. A high density refers 

to a predominance of fibroglandular tissue compared to fat, and breast cancer occurs more 
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commonly in the dense breast environment [Kerlikowske 2019]. In response to the relatively 

high recall rates and room for performance improvement associated with standard 2D 

mammography, intense interest has been focused on 3D breast imaging for years [Vedantham 

2015].  

2.2.3 The advantages of 3D compared to 2D breast imaging 
 
 3D imaging has revolutionized medicine, allowing for an earlier and more accurate 

detection of disease throughout the body. Without question, 3D breast imaging approaches, 

including ultrasound (US), computed tomography (CT), magnetic resonance (MR), and positron 

emission tomography (PET) [Zhang 2018], have improved the characterization and localization 

of concerning breast lesions. However, these are diagnostic applications of imaging. The issues 

that define a viable screening tool are quite different, being centered around the practicality of 

widespread use. The American Cancer Society recommends 3D imaging by MR for women 

considered at high risk for breast cancer, identified by genetic testing or a concerning family 

history [Saslow 2007]. However, the expense, limited availability, and relatively low specificity 

preclude MR as a general screening tool [Taskin 2018]. Similarly, limited data and issues with 

image resolution currently constrain the screening value of breast CT [Lindfors 2010]. Until 

relatively recently, there has been a clinical need for a cost-effective, 3D breast-screening option. 

Now most commonly referred to as 3D mammography, DBT has been filling this need in the 

United States since its approval by the FDA in 2011. This approval followed studies 

demonstrating an improved diagnostic accuracy during screening when both 2D and 3D 

mammography are combined [Chong 2019].   
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2.2.4 The clinical value and technical limitations of conventional 3D mammography 
  
 3D mammography has been rapidly adopted by breast radiologists following its approval 

by the FDA for patient care in 2011. In 2014, approximately 30% of breast imaging clinics 

offered DBT, growing to 65% by 2016 [Gao 2017]. This increased use is supported by studies 

showing an improved diagnostic accuracy when DBT is combined with standard 2D 

mammography, including a higher cancer detection rate and a lower call-back rate for false-

positive findings [Chong 2019]. Indeed, it is now consensus opinion that DBT provides a better 

tool than standard 2D mammography for visualizing soft tissue features of concern, such as 

architectural distortion, asymmetry, and especially breast masses [Chan 2017]. However, 

microcalcification appearance and clustering are also important, with small, irregular, and tightly 

clustered microcalcifications being of most concern for cancer [Nalawade 2009], and questions 

remain regarding reader performance when assessing microcalcifications in DBT images [Horvat 

2019]. As a result, breast screening typically involves two separate imaging studies, including 

standard 2D mammography as well as DBT. By 2016, DBT was used in more than one-third of 

the screening examinations when available, the majority of which also included standard 2D 

mammography [Gao 2017]. However, combining 2D and 3D mammography doubles the 

radiation dose and prolongs the uncomfortable time of breast compression [Ratanaprasatporn 

2017]. Hence, research continues to improve the performance of DBT, with a goal of eliminating 

the need to obtain a standard 2D mammogram at the same time. Appreciating the directions of 

this research requires an understanding of how DBT works. 

 DBT is a form of tomography, which is a general term applied to 3D imaging and refers 

to the fact that 3D imaging devices typically present 3D information as a series of 2D slices 

through depth. Conventional tomographic x-ray devices, including DBT, work by moving a 
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standard x-ray source through space to collect a series of projection views from different angles 

around the target (Figure 2.1). Computer programs combine the information in these projections 

mathematically to reconstruct the 3D image displayed to readers. Developed in the 1970s, 

computed tomography or the “CT scan” is the most widely-recognized and most commonly-

ordered 3D x-ray study [Power 2016]. During a CT scan, the x-ray source and detector rotate 

around the target collecting hundreds to thousands of projections. Complicated and expensive 

machinery is required to accomplish CT, typically delivering relatively high radiation doses 

[Smith-Bindman 2009]. CT has been adapted for breast imaging, often referred to as Dedicated 

Breast CT (DBCT). However, DBCT is currently limited by its relatively low spatial resolution 

and incomplete coverage of the entire breast [Lindfors 2010].  

 

Figure 2. 1. Schematic drawing of the geometry of a conventional digital tomosynthesis system. 
Note that a single standard x-ray source is translated through space to collect a series of 
projection views.  
 
 Tomosynthesis refers to limited-angle tomography. In other words, fewer projections are 

collected over a relatively narrow angle span compared to CT. This significantly simplifies the 

technical demands of the equipment and reduces the radiation dose. First introduced 

conceptually in the late 1930s, tomosynthesis was the earliest attempt to overcome the primary 
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limitation of planar imaging, namely the superposition of overlying detail. The result was a series 

of images on film, referred to as projection views, that could be shifted and superimposed to 

bring into focus structural details present in the same anatomic plane, as first demonstrated 

practically by Garrison et. al. [Garrison 1969]. In other words, tomosynthesis is a technique 

which can capture some 3D information from a limited number of 2D images. The technology 

underwent a series of ingenious modifications, involving innovations in projection patterns and 

viewing devices to overlay the projection films [Dobbins 2003]. Interest in tomosynthesis waned 

through the 1980s, following the introduction of CT, but returned in the 1990s with the 

incorporation of digital detectors, since the application of computer-based image processing and 

mathematical reconstruction eased the workload of the reader, improved the diagnostic accuracy 

of the images, and decreased the required projection number and thus radiation dose of the 

tomosynthesis scan [Dobbins 2003]. Digital tomosynthesis quickly found niches in which the 

cost and radiation dose of CT seemed excessive, but planar imaging was often inadequate. 

Examples included diagnostic evaluations for kidney stones [Liu 2018], chest imaging to look 

for lung nodules [Ferrari 2018], and breast cancer screening [Sechopoulos 2013a].  

 In 2011, the FDA approved DBT for patient care. However, work continues to improve 

DBT, as the performance of each DBT device is limited by the compromises made during its 

design.  Since DBT serves as a breast screening tool, it must deliver a low radiation dose. In fact, 

DBT delivers a total radiation dose similar to standard 2D mammography, dividing this total 

dose between the different projection views [Gennaro 2018]. Additionally, the duration of the 

study must be brief, since breast compression is often uncomfortable and patient movement blurs 

the image. Testing has shown that the chance of patient motion increases with longer exposure 

times [Smith 2016]. Herein lies the compromise: optimizing the projection number, angle span, 
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and information available from each projection within the constraints imposed by the need to 

move a single x-ray source through space to collect the projection views, maintain a low 

radiation dose, and complete the study in a short time. Currently, there are seven manufacturers 

producing DBT devices worldwide, of which four have FDA-approved devices available for use 

in the United States [The Market Reports 2018, US FDA 2018]. Each design uses a different 

combination of source motion protocols, projection number and dose per projection, angle span, 

and source-detector positioning to maximize the diagnostic value of the displayed images 

[Mackenzie 2017, Vedantham 2015]. In large part, the ongoing design changes seek to minimize 

the limitations in resolution (see 2.4.2 Contrast and resolution) imposed by the need to move the 

x-ray source [Zheng 2019].  

 It was this need for compromise in the design of moving-source DBT that provided the 

motivation to develop stationary DBT, which uses a distributed array of fixed x-ray sources 

made possible by CNT technology to collect the projection views without source motion (Figure 

2.2). 

 

Figure 2. 2. Schematic drawing comparing the system geometries of standard mammography, 
conventional digital breast tomosynthesis, and carbon nanotube-enabled stationary digital breast 
tomosynthesis (sDBT). Whereas standard mammography (A) results in a single 2D image of the 
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3D breast anatomy, tomosynthesis can produce a 3D image. However, since conventional DBT 
systems (B) must move the x-ray source, the 3D image can be compromised by blur. In contrast, 
sDBT (C) uses a fixed and distributed array of carbon nanotube (CNT)-enabled x-ray sources, 
allowing for the production of a blur-free 3D image.  
 
2.3 Carbon nanotube enabled stationary digital breast tomosynthesis (sDBT) 
 
2.3.1  Making x-rays 
 
2.3.1a The standard thermionic x-ray source 
 
 The medical community quickly recognized the potential of x-ray imaging to visualize 

pathology. Wilhelm Conrad Roentgen reported the penetrating properties of these rays that he 

discovered in November 1895 [Roentgen 1896]. Within months, devices capable of generating x-

rays were being installed in medical facilities across Europe and North America [NDT 2014]. 

Imaging a wrist at Dartmouth College in Hanover, New Hampshire provided one of the first 

medical x-rays in America [Michaelides 2009], and the fact that x-ray imaging would change the 

course of medicine was demonstrated dramatically in Canada soon thereafter. Tolson Cunning 

was shot in the leg in December, 1895 in Montreal, and an initial surgery failed to locate the 

bullet [Thali 2002]. After learning about a demonstration of x-ray imaging by Professor John 

Cox at McGill University, Cunning’s surgeon, Dr. R. C. Kirkpatrick, turned to Cox for help. A 

45-minute exposure to x-rays showed the bullet to be lodged between the tibia and fibula, 

guiding a successful second surgery [Thali 2002]. Along with the introduction of anesthesia and 

antibiotics, x-ray imaging was a defining moment of modern medicine. In recognition of this 

fact, the Nobel Prize for Physics was commissioned in 1901, with Roentgen being its first 

recipient [Nobel Media 2020].  

 Roentgen studied x-rays using a Crookes tube [Nascimento 2014], which is a partially-

evacuated glass container containing a cathode and an anode. Applying a voltage between these 
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two electrodes generates a current of electrons that produce a greenish fluorescence and x-rays 

(Figure 2.3) on interaction with the glass [Behling 2015].  

 
 

Figure 2. 3. Photographs of a Crookes tube, similar to the device used by Roentgen to 
characterize the x-ray. The Crookes tube (A) consists of a negatively-charged cathode (metal 
disk at left) and a positively-charged anode (at the base) encased in glass tube. Applying a 
voltage between the electrodes results in electron emission from the cathode, resulting in a 
greenish fluorescence as the electrons interact with the glass (B). Note the shadowed cross, 
demonstrating that the electron flux travels from the cathode. These pictures have been shared in 
the public domain by D-Kuru via Wikimedia Commons.  
 

Patented in 1913, the “Coolidge tube” represented a major advance in x-ray source design 

(Figure 2.4) [Nascimento 2014]. In this tube, a tungsten filament was used as the source of 

electrons, and Coolidge’s discovery that heating the metal cathode greatly increased the number 

of available electrons has remained the basis of virtually all diagnostic and therapeutic x-ray 

devices used clinically since then. Indeed, advances in hardware have greatly improved the 

A

B
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safety of x-ray machines. However, the process of generating x-rays for biomedical imaging has 

changed very little over the past century. 

 

 
Figure 2. 4. A drawn depiction of the Coolidge tube as it appeared in the early 1900s. Although 
the basic arrangement is similar to the Crookes tube (Figure 2.3), the use of a heated tungsten 
cathode dramatically increased the electron flux and thus x-ray production. This approach of 
heating a cathode to “boil off” electrons, known as thermionic emission, has remained the basis 
of medical x-ray devices for the past century. This drawing has been shared under the Creative 
Commons Attribution 4.0 International license.  
 
 Heating a metal cathode filament to temperatures greater than 1000ºK excites or 

energizes electrons over the potential energy barrier-of-escape. This process is known as 

thermionic emission (TE). Once available, the electrons are accelerated toward a metal anode. 

The number and energies of these electrons determine the final x-ray profile and are used to 

define the operational settings of the x-ray tube. The electron flux moving from the cathode to 

the anode is the tube current (measured in milliamperes), which multiplied by the on-time 

(measured in seconds), defines the exposure (mAs). It is controlled by filament heating. The 

kinetic energy of the moving electrons results from the voltage set up between the cathode and 

anode, with this voltage differential defining the maximum electron energy and thus penetrating 

potential of the x-rays. For human imaging use, kilovolt energies are required, and the peak 

voltage (kVp) is the other basic operational tube setting. The accelerated electrons lose energy 
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when they interact with the anode. Most is released as heat, but approximately 0.03% of the 

primary electron energy contributes to the diagnostic x-ray beam [Behling 2015]. The energy 

spectrum of these x-rays is adjusted using metal filters to remove the low energy photons 

incapable of penetrating the target, since these photons can deposit in tissue, carrying risk, 

without providing any imaging value. Additionally, the x-ray beam is collimated or shaped to the 

target, to minimize exposure to surrounding tissues.  

 The long experience with TE has produced reliable x-ray sources for a tremendous 

variety of both diagnostic and therapeutic devices. However, given the technological difficulties 

in coordinating multiple TE sources, as a result of their high operating temperature and power 

consumption, standard x-ray tubes impose limitations when repetitive imaging must be obtained 

quickly, as with 3D imaging [Zhou 2010].  

2.3.1b Carbon nanotube cathodes and field emission 
 
 A new x-ray source, based on CNT technology, has emerged over the past two decades. 

Research in the mid-1990s demonstrated the capacity of CNTs to release electrons by field 

emission (FE) [Bonard 2001]. FE is a quantum phenomenon quite different from TE, in which 

the application of an electric field allows electrons to “tunnel” through the potential energy 

barrier. FE occurs almost instantaneously and at room temperature [Parmee 2015]. CNTs are 

well-suited as field emitters for an x-ray source. They are durable, and their high aspect ratio 

(length to width) significantly reduces the work of electron extraction, since the electric field 

concentrates at the nanotube tips [Parmee 2015]. Although the potential advantage of a compact 

electron source with fast on-off times for medical imaging was recognized early, nearly a decade 

of research in the Applied Nanotechnology Laboratory at the University of North Carolina was 

required to produce a CNT cathode capable of generating the tube currents needed for human use 
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[Puett 2018a]. Step by step, the techniques to achieve appropriate CNT lengths, density, and 

distribution and a stable CNT attachment over an area of several square millimeters were 

developed [Calderon-Colon 2009]. Currently, this fabrication process is producing CNT cathode 

arrays on a commercial scale (Figure 2.5).  

 

Figure 2. 5. Photographs and a schematic drawing of a carbon nanotube (CNT) cathode, a single 
CNT-enabled x-ray source, and an x-ray tube containing a fixed array of these CNT-based 
sources. The aluminum x-ray window, access ports, and ion pumps can be seen in this 
photograph of a sealed tube (a). The tube contains an array of 31 fixed and separate x-ray sources 
(b), each of which uses field-emission to release electrons from a CNT-based cathode. Figure 
adapted from [Puett 2018a]. 
 
 Multi-walled CNTs measuring 3-8 nanometers in outer diameter are grown via a thermal 

carbon vapor deposition process. Vacuum annealing followed by mechanical removal of the top 

surface layer yields a vertically-aligned CNT field that is surprisingly uniform in CNT density 

and length [Calderon-Colon 2009].  

 CNT cathodes require a unique operating environment. The CNT-enabled x-ray source is 

a triode or 3 electrodes operating in a sealed space. The gate electrode and focusing structures sit 

between the CNT cathode and the metal anode. Unlike the thermionic x-ray source, in which the 

tube current is controlled by heating the metal cathode filament, the tube current in the CNT-

based x-ray source is controlled by adjustments in the voltage between the gate and cathode. A 

1-2 kV gate voltage is typically required to extract electrons at a rate adequate to achieve the 



www.manaraa.com

 

  21 

tube currents needed for human imaging. Approximately 60% of the available electrons pass 

through the gate and are accelerated by the anode voltage, which can vary from around 30 kV for 

mammography to 140 kV for chest imaging. CNTs are quite sensitive to arcing events or 

“shorts” between electrodes. These currents are carried by ions produced from the heated tube 

components or environmental contaminants. To minimize the arcing risk, the source tube 

containing CNT cathodes is sealed and maintained in a strict vacuum of <10-8 torr.  Sealed tubes 

containing CNT-based cathodes have proven to be quite durable x-ray sources, demonstrating a 

stable gate voltage to maintain the tube current over an estimated 2.5 years of clinical use 

[Sprenger 2011]. 

2.3.2  Carbon nanotube-enabled x-ray source arrays and stationary digital tomosynthesis   
 
 The CNT-enabled x-ray source is ideal for the repetitive imaging steps needed to 

accomplish 3D imaging. It is fast and operates at room temperature, eliminating the need for 

much of the supporting equipment required with standard x-ray tubes. Additionally, since simple 

voltage manipulation is all that is needed to control x-ray production, the function of multiple 

individual sources can be easily coordinated. As such, fixed arrays of sources can be built with 

tremendous flexibility in their distribution, thereby offering a solution to the limitations imposed 

by the need to move thermionic x-ray sources through space to collect projection views. 

Recognizing the advantages of a fixed, distributed CNT-enabled source array for tomosynthesis 

led to the concept of stationary digital tomosynthesis, and collaboration with industry allowed 

the construction of sDT devices customized to different imaging tasks (Figure 2.6) [Puett 2018a]. 

Two sDBT devices were available for study during this dissertation, including the first-

generation sDBT device now involved in human trials (Figure 2.6) [Lee 2019] and a second-



www.manaraa.com

 

  22 

generation sDBT device for laboratory experimentation [Calliste 2017]. The sDBT devices differ 

primarily in their achievable dose rates, peak energies, and angular spans [Calliste 2017]. 

 

Figure 2. 6. Representative examples of experimental carbon nanotube-based stationary digital 
tomosynthesis devices that are currently involved in human studies. The stationary digital breast 
tomosynthesis (sDBT), stationary intraoral tomosynthesis (sIOT), and stationary digital chest 
tomosynthesis (sDCT) systems utilize different geometries and supporting equipment, 
customized to the imaging task. Example images from human study are displayed next to each 
device. Figure adapted from [Puett 2018a]. 
 
 In addition to the two sDBT devices, a seven-source linear tube with an angle span of 12° 

has been developed for dental imaging [Inscoe 2018]. This imaging system was designated 

stationary intraoral tomosynthesis (sIOT), with “intraoral” referring to the location of the 

detector in the mouth (Figure 2.6). Experience with sIOT had a direct impact on the work carried 

out with sDBT, which in turn heavily influenced the development of customized image 

processing approaches for sIOT (see APPENDIX: Developing synthetic dental radiography). 

More specifically, work with sIOT was integral to the development of dense-feature artifact 

reduction techniques as well as recognition of the potential value of displaying multi-view 

images (see 3.5.3 Processing images).  

 The application of stationary tomosynthesis to chest imaging introduced unique 

challenges, especially with scatter. Pre-clinical testing using chest-mimicking phantoms, pig 

lungs, and cadaveric human lungs as well as early IRB-approved and HIPAA-compliant trials on 

stationary Digital Chest
Tomosynthesis (sDCT)

stationary Intraoral
Tomosynthesis (sIOT)

stationary Digital Breast 
Tomosynthesis (sDBT)
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patients with cystic fibrosis [Hartman 2016, Lee 2018, Gunnell 2019], lung nodules (Clinical 

Study Identifier: NCT02075320) [Hartman 2016], and cardiac calcifications (Clinical Study 

Identifier: NCT03169062) have been carried out using a repurposed tube of CNT-enabled x-ray 

sources incorporated into a standard chest imaging configuration. These initial studies with 

stationary digital chest tomosynthesis (sDCT) have laid the foundation for an NIH-supported 

study (grant: 1R21CA216780) to study scatter during sDCT imaging [Inscoe 2020a]. 

Musculoskeletal imaging to improve the detection of fractures is also a promising area for 

stationary tomosynthesis, and early experience with this approach is now available [Inscoe 

2020b]. The most recently developed CNT-enabled system for head imaging contains multiple 

linear arrays of x-ray sources that are arranged to cover the angular span necessary for complete 

“CT” imaging [Spronk 2020, Luo 2020].  Although still considered experimental, CNT-enabled 

devices have demonstrated a reliable performance across this broad range of clinical 

applications. In fact, the sDBT systems utilized for this dissertation work and the sDCT device 

have been operational for more than 5 years in pre-clinical testing and now human studies 

[Tucker 2013, Lee 2019, Shan 2015, Inscoe 2020a]. Additionally, the FDA has recently 

approved the first CNT-enabled device for human imaging. This single-source portable x-ray 

machine is now operational in hospitals [Pesce 2017].  

2.4  Defining and measuring the quality of the digitized image 
 
2.4.1 Digital radiography 
 
 Without question, digitization has revolutionized medical imaging, allowing for the easy 

storage and transfer of image data, and importantly, the opportunity for post-acquisition 

processing. Digital radiography is made possible by flat-panel x-ray detectors, which consist of a 

2D matrix of pixel elements. The advances in detector technology over the past 15 to 20 years 
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have been dramatic and are quite directly responsible for the renewed viability of tomosynthesis. 

At a general level, digital detectors convert the energy from an x-ray photon into an electric 

signal that is passed to a computer. For breast imaging detectors, pixels typically have a footprint 

of just 70-100 µm, permitting the resolution needed to characterize microcalcifications. As such, 

the average flat-panel detector measuring around 25 cm per side will contain upwards of 10 

million pixels.  

 Many measures are used to characterize detector performance. However, the detective 

quantum efficiency (DQE) provides a useful metric, as it quantifies how well the detector 

collects and then passes on the information from incoming photon signals. In a broad sense, 

DQE compares the signal-to-noise ratio (SNR) of the incoming signal to the readout signal. 

More specifically, it measures the detector’s influence on image contrast, noise, and resolution, 

taking account of the strength of the incoming signal (x-ray photon density). The detector pixel 

size is also an important determinant of system performance, as it defines a theoretical limit of 

spatial resolution. As noted above, pixel sizes in the range of 70-100 µm are used for breast 

imaging, since characterizing microcalcifications requires this level of resolution. Finally, the 

readout rate or time required to transfer the pixel-by-pixel information to the computer is 

important, especially for imaging modalities such as sDBT. Given the potential for fast scan 

times, the detector readout rate may prove to be a rate limiting step for image acquisition during 

sDBT, since each projection view must be read out sequentially.  

2.4.2 Contrast and resolution 
 
 Medical radiography can be summarized as the process of capturing anatomic detail in a 

visual image. The overall performance of an x-ray system is best judged by its final product, 

namely a displayed image of high quality. High quality is a non-specific descriptor, but in a 
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broad sense, a high-quality image presents information in a way that maximizes the chance that a 

trained reader will make an accurate diagnosis. Interpreting the anatomic and pathologic detail 

displayed in an image involves recognizing patterns. The clarity or visibility of the pattern is a 

direct result of the resolution and contrast of the image. Resolution and contrast define image 

characteristics that allow a region-of-interest, such as an anatomic detail, to be distinguished 

from its background. Contrast defines the intensity of a feature relative to its immediate 

surroundings, while resolution defines the ability to distinguish two independent features as 

separate. As such, resolution refers to the “distinctness” of the edge that separates a feature from 

its surroundings and is often described as the “crispness” or “sharpness” of an image. Resolution 

and contrast are quantifiable and can therefore be used to compare the quality of one image to 

another.  

 Contrast results from the relative absorption of x-ray photons as they interact with 

components of the anatomic target. As such, contrast is dependent on the energy spectrum of the 

x-ray beam as well as the physical properties of the target itself. The extent of photon absorption 

is defined mathematically by the attenuation coefficients of the target components. Optimizing 

contrast during image acquisition primarily involves selecting appropriate tube settings (mAs 

and kVp). The goal is to minimize or at least correct for those factors that limit contrast, 

primarily scatter and noise. As discussed below, tomosynthesis presents unique challenges with 

regard to these issues (see 2.5 Image quality problems inherent to tomosynthesis in general and 

sDBT in particular). 

 Unlike contrast, which is an inherent property of the object being imaged, resolution is 

primarily dependent on the imaging system. In large part, resolution reflects geometry and is a 

result of the relative sizes and locations of the x-ray source focal spot on the anode, the feature-



www.manaraa.com

 

  26 

of-interest being imaged, and the detector pixel. Figure 2.7 demonstrates these geometric 

relationships.  

 

Figure 2. 7. A schematic drawing identifying the key physical parameters and geometric 
relationships that determine the resolution of an x-ray imaging system. For a stationary source, 
resolution is primary determined by the sizes and locations of the anode focal spot, the detector 
pixels, and the anatomic target. However, blur can be introduced in the detector or by movement 
of the x-ray source or target during the scan, which can degrade resolution.  

 From an image acquisition standpoint, achieving good resolution involves selecting an 

appropriate equipment design (focal spot size, separation distances, and detector properties) for 

the given task, while minimizing factors that compromise resolution, such as motion-related blur.  

2.4.3 Scatter and noise 
 
 Scatter and noise degrade image quality and are problematic for all x-ray imaging 

systems. However, unique challenges arise with scatter and noise during digital tomosynthesis 

[Wu 2009] (see 2.5 Image quality problems inherent to tomosynthesis in general and sDBT in 

particular). Diagnostic imaging typically utilizes x-ray photons in the energy range of 20 to 150 

kVp. In this range, the two predominant interactions between the photon and the atoms of the 

target are the photoelectric effect and scatter [Bushberg 1998]. The photoelectric effect refers to 
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the disappearance of the x-ray photon as its energy is absorbed by a target atom. Its energy is 

imparted to the electron cloud, displacing an electron and leaving the atom in an ionized state. 

Non-absorbed, or primary, x-ray photons pass through the target and are collected by the 

detector. Image contrast results from the relative differences in photon absorption across the 

target. However, x-ray photons can also deflect off target atoms. Most commonly, this 

interaction is inelastic, meaning that the x-ray photon loses some of its energy and travels off in a 

different direction. This interaction is known as Compton scattering, named after Arthur 

Compton, who described it in the early 1920s [Bushberg 1998]. Since the deflected photons 

follow an unexpected path to the detector, they result in image patterns that do not correspond to 

the actual structure of the target. The chance that a photon will be scattered depends on its 

energy, the density of the target, and the distance that the photon travels through the target 

[Marchiori 2004].  

  X-ray machines are electronic devices, and given the stochastic behavior of electrons and 

photons, their operation is associated with noise. Noise is best considered as random fluctuations 

in a signal, and it is present in both the x-ray emission and digital detector. X-ray noise is known 

as “quantum,” reflecting the inherently probabilistic nature of photon generation and 

interactions. Detector noise is referred to as “electronic,” since it originates predominantly in the 

electronic circuitry. For x-ray devices operating at higher energies (> 50 kVp) and dose, typical 

of most general radiography, the quantum noise component predominates, and the system is 

referred to as quantum limited. However, DBT typically operates at lower energies, and the dose 

is divided between many sources. As a result, the signal reaching the detector (the photon flux) is 

relatively low, allowing for a more predominant electronic noise effect. Hence, optimizing the 

performance of a DBT system in large part involves determining the most appropriate x-ray tube 
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operation in order to balance noise and total dose. Important factors include the tube current and 

anode voltage, projection view number and span, the distribution of dose among sources, and 

timing of source exposures. Intuitively, collecting as many projection views as possible or 

perhaps concentrating the dose in the most central projection views may be expected to improve 

image quality. However, because of detector noise, this is typically not the case. For example, 

sDBT performance testing prior to its clinical implementation included assessments of the 

signal-to-noise ratio (SNR) in many system configurations and demonstrated that the use of 15 of 

the available 31 sources with dose divided equally across the entire span was optimum for image 

quality [Tucker 2013].  

2.4.4 Feature visibility 
 
 There is no perfect x-ray image, as processing the information for display involves 

tradeoffs between contrast and resolution. Noise limits contrast, and as such, removing the noise 

signal is preferable. However, adjusting image information is known as filtering, and all filtering 

comes at a price. For example, noise is a high-frequency image component, but so are edges. As 

such, suppressing noise can lower resolution. It is therefore best to consider image quality in a 

more global sense. A high-quality image is one that provides the most-useful clinical 

information. In other words, a high-quality image presents information in a way that maximizes 

the chance that a trained reader will make an accurate diagnosis. This is a task-specific 

definition. For example, the optimum balance of contrast and resolution to display a breast mass 

in a mammogram may be quite different from the balance that best displays a microcalcification. 

As such, defining image quality at the clinical level involves measuring the visibility of specific 

features. The visibility or conspicuity of an image feature can be quantified through the 

calculation of detectability indices [Gang 2011] as well as assessments of trained reader 
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performance and preference [Peppard 2015] during image interpretation. Detectability indices 

integrate the primary determinants of image quality, including contrast, noise, and resolution, 

with a task function for a particular feature within the image [Gang 2011]. Determining feature 

visibility played a key role in the work detailed in this dissertation (see 3.6.1 Measuring image 

quality and quantifying feature detectability).        

2.5 Image quality problems inherent to tomosynthesis in general and sDBT in 
 particular  
 
2.5.1  Motion blur degrades resolution 
 
 Motion of any type during image acquisition introduces blur and degrades image quality. 

As such, resolution is inherently problematic with conventional or moving-source DBT. 

Continuous source motion effectively elongates the focal spot in the direction of motion, thereby 

decreasing resolution [Zheng 2019]. To overcome this technical limitation, some DBT devices 

use a step-and-shoot approach [Vedantham 2015]. Stopping the x-ray source at image acquisition 

solves the problem of source blur but takes longer, increasing the chance that the patient will 

move [Acciavatti 2012], which again introduces blur. In short, the need to move the x-ray source 

imposes limitations, forcing compromises in design. However, since CNT-enabled sDBT uses a 

fixed array of rapidly-responsive and easily coordinated sources, a wide angle of projection 

views can be collected quickly and without source motion [Tucker 2013]. The resolution of an 

imaging system can be quantified, providing a key metric to compare different systems [Marshall 

2012]. The modulation transfer function (MTF) is a standard measure of resolution [EUREF 

2018]. In essence, MTF relates contrast (regional intensity differences) to frequency in an image. 

Rapidly-changing intensities, such as those encountered at an edge, consist of high-frequency 

information, while smooth areas with little intensity change represent low-frequency 

information. As such, the MTF quantifies the relative contrast at a particular spatial frequency 
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for a given system.  Pre-clinical testing has demonstrated that sDBT can offer a higher spatial 

resolution compared to the moving-source DBT system from which it was constructed [Calliste 

2017].  

2.5.2  Scatter limits contrast 
 
 Scatter is a significant problem during medical imaging. In fact, for many diagnostic 

studies, especially if the target includes dense features, most photons reaching the detector have 

been scattered. Scatter is certainly problematic during breast imaging. For example, the scatter-

to-primary (SPR) of x-ray photons during standard mammography ranges from 0.1 to 1.1, 

correlating most strongly with breast thickness and density [Boone 2000]. For this reason, scatter 

reduction techniques, including the use of anti-scatter grids and creating an air gap between the 

target and detector, are typically employed as a part the standard mammography protocol. These 

techniques work by removing or excluding photons following angled paths and therefore more 

likely to have been deflected. However, since the reconstruction of 3D information by 

tomosynthesis is based on acquiring angled projection views, anti-scatter grids and air gaps are 

problematic. As such, the SPR in DBT images can be greater than 1.5, again depending primarily 

on breast thickness [Sechopoulos 2007]. Additionally, since tomosynthesis involves collecting 

projection views from different positions relative to the target, photons pass through different 

tissues and have different path lengths, depending on the projection angle. As a result, the extent 

of scatter varies across the span of projection views [Sechopoulos 2007]. For these reasons, 

image processing steps after image acquisition are being explored to correct for scatter in DBT 

images, and developing scatter-correction algorithms for DBT is an area of active research by 

many groups (see 3.5.3b Creating scatter maps, 4.2.1 Quantifying scatter in contrasted and non-
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contrasted sDBT images, and 4.2.2 The effect of scatter correction through processing on sDBT 

image quality). 

2.5.3  Limited sampling introduces artifact 
 
   Artifact in radiography is best considered as a spurious or distorted appearance of a 

structure in the image.  Similar to scatter and noise, there are problems with artifact unique to 

digital tomosynthesis. Artifact can be introduced during both image acquisition and post-

acquisition processing and includes blur related to x-ray source and patient motion, detector lag 

and ghosting, and reconstruction effects. As noted above, CNT-enabled stationary tomosynthesis 

is specifically designed to minimize blur caused by source and patient motion, taking advantage 

of its ability to acquire multiple images quickly using a distributed array of fixed x-ray sources. 

However, reconstruction artifacts remain a problematic issue, as they result from the 

mathematical attempts to recreate a 3D image space despite working with an incomplete 

sampling of the target.  

 Tomosynthesis refers to limited-angle tomography. In other words, a relatively small 

number of 2D projections are collected over a relatively small angle-span. Computer algorithms 

known as “reconstruction” use the information present in these projection images to generate the 

3D image displayed to readers for interpretation (see 2.6 The image processing chain that 

generates sDBT images and the value of the synthetic mammogram). However, given the 

incomplete information available from the limited sampling of the target space, reconstruction is 

inherently problematic and associated with artifact. There are many different types of 

reconstruction artifact, related primarily to the physical properties of the object being imaged as 

well as the type of reconstruction algorithm used to generate the 3D image [Geiser 2018, Kim 

2016]. Both in-plane shadowing and out-of-plane rippling can be prominent in the reconstructed 
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images [Geiser 2018]. Artifacts associated with highly-attenuating features, especially metallic 

hardware, can be prominent in tomosynthesis images. In DBT, artifact is present around breast 

calcifications and metal, the latter including clips from previous procedures and the needles and 

wires used to indicate lesions of concern (Figure 2.8) [Puett 2019a].  

  

Figure 2. 8. Examples of the “slinky” appearance of metal artifact in stationary digital breast 
tomosynthesis (sDBT) images of a lumpectomy specimen containing metal needles and wires 
used to guide biopsy. These image slices were selected from different depths [(A) 2.8 cm, (B) 3.7 
cm, and (C) 4.3 cm] in the reconstructed 3D image stack through which the reader scrolls to 
identify pathology and appreciate depth relationships. Figure adapted from [Puett 2019a]. 
 

As with the issues of scatter and noise, the development of image processing approaches 

to minimize artifact in tomosynthesis images is an area of active research (see 3.5.3c Reducing 

artifact and 4.2.3 Artifact reduction in reconstructed and synthetic sDBT images).  

2.6 The image processing chain that generates sDBT images and the value of the 
 synthetic mammogram 
 
 The ability to manipulate the information displayed in an image using computer 

algorithms is a significant advantage of digital radiography compared to film. Indeed, digital 

image processing is directly responsible for the renewed clinical viability of tomosynthesis. As 

with all x-ray-based 3D medical imaging approaches, the final images displayed to the reader for 

interpretation following a DBT study are the product of extensive computer processing. 

Typically, DBT information is displayed as a stack of image slices through which the reader 
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scrolls, allowing appreciation of the changing appearance of image features through depth. 

However, it is now accepted that displaying not only the 3D image stack but also synthetic 2D 

slab images and even a complete synthetic 2D mammogram has clinical value. Synthetic slabs 

and synthetic mammograms integrate or synthesize the information in the 3D image stack back 

into single 2D images. Although it may seem counter-productive to generate 2D images after 

going through the many technical and processing steps to produce a 3D image stack, there are a 

host of benefits. First, synthetic mammograms allow a direct comparison to previous standard 

mammograms. Second, synthetic mammograms provide a global view of the breast anatomy, 

which can guide attention to key areas when reviewing the stack of reconstructed image slices. 

Since this stack can include many dozens to more than 100 image slices, depending on the 

thickness of the compressed breast, there is a risk of reader fatigue. As such, an initial global 

assessment is helpful. Third, generating the synthetic mammogram provides an opportunity to 

identify and emphasize specific feature characteristics through processing, potentially improving 

the ability to identify pathology. Finally, since individual microcalcifications may appear in 

different slices through the reconstructed 3D image stack, it is easier to appreciate the spatial 

association or clustering of microcalcifications in 2D synthetic images, which is clinically 

important, since microcalcification clustering provides an important diagnostic clue regarding 

the potential for a breast lesion to be malignant [Sickles 2013]. In fact, the ability to generate a 

diagnostically-useful synthetic mammogram is an area of quite active research, since it should 

eliminate the need to collect standard mammograms at the same time as the DBT study. The 

sequence of computer algorithms that generate the 3D and then 2D images for DBT is known as 

the image processing chain, and it typically involves 4 general steps: projection image 
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correction, reconstruction, feature enhancement, and forward projection (Figure 2.9) [Puett 

2019b].  

 

Figure 2. 9. Schematic drawing of the key processing steps and flow of information through an 
image processing chain to produce a synthetic mammogram for stationary digital breast 
tomosynthesis (sDBT). The synthetic mammogram is a mathematical construct generated by an 
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image processing chain with 4 key computational steps (green arrows): correction of the 
projection images, back projection (reconstruction), feature enhancement, and forward 
projection. Each step manipulates pixel values as information is moved between 2D and 3D 
image spaces, culminating in the integration of clinically-important features into the synthetic 
mammogram. There are multiple different computer algorithms (blue boxes) that must be 
integrated to accomplish each step. 
 

Projection image correction is the first post-acquisition processing step. Projection 

images contain 2D information generated by the series of projection views taken at oblique 

angles relative to the target. The goal of projection image correction is to assign gray-scale 

values to pixels in the projection image that reflect the actual attenuation of the object as well as 

correct for non-uniformities in the x-ray exposure and detector. The only information available to 

the system to determine attenuation is the number of x-ray photons measured by the detector 

pixel when it is active. This x-ray flux at the detector is referred to as the Intensity or Signal. 

Beer’s law defines the mathematical relationship between intensity and attenuation [Duncan 

2014]. It relates attenuation to the negative natural log of the ratio of the x-ray intensity reaching 

the detector to the incident x-ray intensity. This ratio is determined at the time of the examination 

by comparing the pixel intensity values in projections taken with the target in-place (Signalraw) to 

pixel values obtained using an equivalent exposure but no target (Signalblank). The first 

computational step is therefore to calculate the ratio of raw to blank pixel values. Additionally, 

by subtracting averaged pixel values from multiple dark images obtained without fired x-rays 

(Signaldark), the final assigned pixel value, referred to as “normalized” (Signalnormalized), is 

corrected for detector non-uniformities, such as non-functioning pixels (Eq. 2.1). 

Signalnormalized = (Signalraw – Signaldark) / (Signalblank – Signaldark)    (2.1) 

In addition to normalizing the pixel values in the projection images, processing to address 

scatter, noise, and artifact is most efficiently applied at the level of the projection view and thus 

is often included in the step of projection view correction.   
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 Reconstruction refers to the processing step of generating a 3D image from the 

information (normalized pixel intensity values) available in the series of corrected 2D projection 

images [Sechopoulos 2013b]. The goal of reconstruction is to assign grayscale values to the 

discretized image space that reflect the actual attenuation in the same region of the target.  

However, in this case, it is a 3D image space, and since it has volume, the discretized region of 

space is referred to as a voxel. There are many different reconstruction algorithms. However, in 

general, these can be considered in two broad groups: direct backprojection and iterative 

reconstruction, the latter including both algebraic and statistical approaches [Sechopoulos 2013b, 

Xu 2015]. Choosing a reconstruction approach involves compromise, balancing the complexity 

of the algorithm and its computational expense against the utility of the information presented to 

the reader. For example, direct backprojection for DBT can be accomplished within seconds 

using an off-the-shelf computer, while the more-complicated algebraic and statistical iterative 

approaches may require much longer, even on a dedicated computer that has parallel, multi-

processing capability, depending on the complexity of the models used to represent the system 

mathematically. The complexity of the reconstruction algorithm is largely determined by the 

sizes of the projection data and the reconstructed image space as well as the system matrix 

model. The system matrix defines the relationship between the voxels in the reconstructed image 

space and the pixels in each projection image based on the geometry of the imaging system. 

Therefore, it can be used to back-project the 2D images into a 3D image space as well as 

forward-project the 3D image into the 2D image space. More detailed models of the system can 

better represent x-ray behavior (path estimates and noise models) and yield more accurate 

images, but applying these models is computationally expensive. Additionally, since it is 

impossible to generate a perfectly accurate 3D image space without complete sampling (see 2.5.3 
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Limited sampling introduces artifact), filtering is typically used to limit artifacts and improve 

image quality. However, filters always involve trade-offs in how they affect contrast, resolution, 

noise, and artifact, and therefore, filter selection and optimization is task-dependent. The work 

detailed in this dissertation, which sought to optimize task-specific image processing for this 

novel technology, explored different reconstruction approaches, including direct filtered 

backprojection [Kuo 2011] as well as an iterative algorithm [Wu 2015] (see 3.5.3d 

Reconstructing 3D images from 2D projections).  

 Regardless of the approach, the result of reconstruction is a stack of image slices, which 

step through the target in thin increments. For sDBT, the image slices were typically 

reconstructed in thin increments of 0.5 or 1 mm in order to maximize the clarity of small 

features, such as microcalcifications. Each slice brings into focus only those features present at 

the same anatomic depth, and the reader scrolls through the stack to identify pathology and 

appreciate how an image feature changes through depth. As such, it overcomes the primary 

limitation of 2D imaging, namely the superposition of image features, which can both obscure 

important findings and mimic pathology (see 2.2 Breast cancer and currently-available breast 

imaging technologies).  

 However, as noted above, it has now become standard to include the option of generating 

synthetic 2D slab images or a complete synthetic mammogram when displaying DBT 

information. Synthetic mammography integrates the information in the 3D image stack into a 

single 2D image using forward projection algorithms. It is at the step of forward projection that 

feature enhancement algorithms can be applied most efficiently. As is the case with 

reconstruction, there are a host of forward projection and feature-enhancement approaches, 

spanning a wide range of computational complexity from direct algebraic calculation to deep 
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learning [Homann 2015, Wei 2019, Rodriguez-Ruiz 2018]. A goal of this project has been to 

develop a complete image processing chain for sDBT that culminates in a clinically-useful 

synthetic mammogram (see 3.5.3e Forward projecting the 3D image space into synthetic 2D 

mammograms and 4.4 Incorporating synthetic mammography into sDBT). 

2.7 Summary for Chapter 2: Literature Review 
 
 Made possible by advances in both technology as well as computer-based processing, 3D 

imaging has revolutionized medicine. To date, x-ray devices remain the predominant tools for 

medical imaging, although interestingly, until quite recently, the process of generating x-rays for 

medical imaging devices has changed little over the past century. Developed in the Applied 

Nanotechnology Laboratory at the University of North Carolina, CNT cathode technology now 

offers a viable approach to generate x-rays for human imaging. This novel approach allows the 

source cathode to operate at room temperature and uses simple voltage manipulation to control 

x-ray production. As a result, multiple distributed and fixed x-ray sources can be aligned in 

arrays and their x-ray production coordinated, thereby offering a flexible design capable of 

collecting many projection views quickly. This technology is ideal for the repetitive imaging 

steps required to perform 3D imaging. Recognizing the potential of the CNT-based x-ray source 

to improve 3D imaging, the decision was made to apply it to tomosynthesis, a form of limited-

angle tomography. The work summarized in this dissertation explored the clinical potential of 

sDBT. In large part, it involved developing the computer algorithms to generate sDBT images 

containing information of high clinical value, potentially providing a tool to improve the 

detection of breast cancer. 
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CHAPTER 3: METHODOLOGY

 
3.1 Introduction to Chapter 3: Methodology 
 
 Chapter 3: Methodology details the research protocols used to collect the data presented 

in this dissertation, providing the basis upon which the value and accuracy of the findings and 

eventual conclusions can be judged. Since this work sits at the intersection of basic 

experimentation and clinical application, it included a broad spectrum of study designs and 

research settings, ranging from highly-controlled laboratory conditions to studies involving 

human subjects and readers. The chapter begins by reviewing the rationale for the research 

approach, which in general involved testing the functionality of the novel stationary digital 

breast tomosynthesis (sDBT) technology in the lab in order to improve its performance in the 

clinic. The research environment is then described, followed by detailed descriptions of the data 

sources, collection methods, and methods of analysis used to generate and interpret the data. 

Finally, the chapter concludes with a discussion of the trustworthiness of the data in light of the 

limitations inherent with the study designs.  

3.2 Rationale for the research approach 
 
 Given its purpose of exploring the clinical potential of a novel imaging system, the 

research presented in this dissertation often followed a predictable approach, in which basic 

experiments were designed to isolate and study a problematic issue or new application in order to 

improve the performance of the technology in the clinic. Most often, performance was measured 

in terms of the quality and/or diagnostic value of the generated images. Although customized to 

this unique technology, the study designs used in this dissertation were based on well-established 
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protocols for (1) measuring the performance of the sDBT device as it acquired images [EUREF 

2018] as well as (2) the utility of the information presented in the resulting images [Gilbert 

2015]. Typically, the goal of testing was to develop task-specific image processing algorithms, 

building on a foundation of code previously written by our research group [Wu 2015]. In other 

words, the development and then application of new code was typically the link that tied the 

findings from basic experimentation to the assessments of clinical utility through human study. 

Interestingly, findings during human study often demonstrated unanticipated concerns that 

needed to be addressed through coding, leading to the design of additional basic experiments. As 

such, research in the lab and experience in the clinic provided complementary data sources that 

have guided this dissertation work.     

3.3 Research setting and context 
 
 The research detailed in this dissertation spanned the spectrum from basic 

experimentation in the lab to human study in the clinic. As such, its success reflects the highly-

collaborative environment of the medical imaging research community at the University of North 

Carolina (UNC) at Chapel Hill and its School of Medicine. The work was guided by a team of 

scientists and translational radiologists interacting through the Applied Nanotechnology 

Laboratory, housed in the Department of Physics, with strong ties to the Joint UNC/NC State 

Department of Biomedical Engineering, the Biomedical Research Imaging Center (BRIC), and 

the Breast Imaging Clinic in the Lineberger Cancer Center at the North Carolina Cancer 

Hospital. This multi-disciplinary setting provided a vast resource base offering (1) intellectual 

expertise in x-ray device construction and operation, nanotechnology, image processing, 

statistical analysis, and the clinical assessment of image value, (2) the advanced equipment 

needed to build and test carbon nanotube (CNT)-enabled imaging devices at the pre-clinical 
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level, and (3) the tremendous support needed to carry out human studies involving experimental 

technologies. This support included study coordinators, technicians specially-trained to operate 

the unique imaging devices, radiation safety experts, and clinician-scientists to design the trials 

and oversee their safe implementation. 

 The work presented in this dissertation is best viewed in the context of the rapidly-

advancing technology of 3D medical imaging in general. The sheer number of computed 

tomography (CT) scans ordered in the United States is a testament to the critical role that 3D 

imaging plays in modern medicine, given its ability to identify pathology early and accurately. 

Based on estimates made by Consumer Reports, more than 80 million CT scans were performed 

in 2015 [Consumer Reports 2015]. However, given the extraordinarily complex machinery 

required to accomplish CT, the CT scanner is expensive to build, purchase, and maintain, and as 

a result, CT scanning is costly. In 2019, it is estimated that the annual service cost for a CT 

scanner ranges from $35,000 - $100,000 [Kinnas 2019]. Additionally, even though the newest 

CT scanners and imaging protocols offer lower dose options for some tasks, most CT studies are 

associated with relatively high radiation doses, ranging from 16 mSv for a coronary CT 

angiogram to 1.4 mSv for a “low-dose” chest scan to screen for lung nodules [McCollough 2015, 

Larke 2011]. To put this dose in perspective, Americans are exposed to approximately 3 mSv of 

environmental radiation annually [Hendrick 2010]. In fact, it is now estimated that medical 

imaging accounts for the predominant source of radiation exposure in Americans [Jones 2012]. 

Although quantifying the risk of this exposure and its potential contribution to cancer is 

controversial, minimizing medical radiation exposure as much as possible is recognized as an 

important public health step [Hendrick 2010].  
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 Tomosynthesis provides an opportunity to gather some 3D information at a lower cost 

and lower radiation dose.  Although there are many possible applications for digital 

tomosynthesis, at this time, digital breast tomosynthesis (DBT) with its clinical designation of 

3D mammography predominates, with a rapidly growing use over the past 9 years. By 2016, 

about 80% of breast imaging practices used 3D mammography [Gao 2017]. However, despite its 

potential, 3D mammography has yet to completely replace standard 2D mammography as the 

breast screening tool-of-choice. Additionally, its value as a diagnostic tool relative to other 

imaging modalities, such as ultrasound (US) and magnetic resonance (MR), remains 

controversial [Berg 2016]. As such, improving DBT technologies as well as the computer-

processing approaches that generate the images for reader interpretation are areas of very active 

research by both academic groups and industry. This body of experience has yielded accepted 

pre-clinical models and human study protocols to assess DBT performance. For example, well-

characterized breast-mimicking phantoms are available for pre-clinical testing (see 3.4.1 Breast-

mimicking phantoms), and appropriate questionnaires and statistical analysis techniques have 

been developed to quantify reader performance and preference when viewing DBT images (see 

3.6.2 Assessing reader performance and preference). The methodologies used in this dissertation 

work were based on these established experimental approaches.  

3.4 Research samples and data sources 
 
3.4.1 Breast-mimicking phantoms 
 
 Breast phantoms that mimic the radiographic properties of human tissue have been 

developed, providing an imaging target for which ground truth knowledge of the features is 

available. As such, phantoms provide an ideal target for (1) optimizing image acquisition 

protocols, (2) testing different post-acquisition image processing steps, and (3) comparing one 
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imaging system to another.  Breast-mimicking phantoms containing a wide variety of 

pathologies, such as masses and calcifications of different sizes, are available across a range of 

clinically-appropriate thicknesses and densities. Three phantoms were imaged during these 

experiments, including the American College of Radiology mammography accreditation 

phantom (ACR phantom), the CIRS Model 020 BR3D Breast Imaging Phantom (CIRS Imaging 

phantom) [CIRS Tissue Simulation & Phantom Technology, Norfolk, VA], and the CIRS Model 

013 Stereotactic Needle Biopsy Training Phantom (CIRS Biopsy phantom) [CIRS Tissue 

Simulation & Phantom Technology, Norfolk, VA]. The ACR phantom replicates the clinical 

characteristics of a 4.5 cm compressed breast thickness containing feature mimics in a smooth 

background reproducing an average glandular and adipose tissue density (Figure 3.1A). The 

microcalcification and mass features were utilized in this work. Five clusters of aluminum oxide 

specks mimic microcalcifications, with specks ranging in size from 0.16 mm to 0.54 mm. Five 

lens-shaped mimics reproduce mass lesions of varied size and density. The semi-circular CIRS 

Imaging phantom replicates a compressed breast shape (Figure 3.1B). The CIRS Imaging 

phantom simulated a breast environment with 50% fatty and 50 % glandular tissue in a swirled 

pattern [CIRS 2020a], most closely resembling a Breast Imaging Reporting and Data System 

(BIRADS) class C density. It was available in 1-cm slabs, which could be stacked to simulate 

compressed breasts of different thicknesses. One slab also contained circular mass and 

microcalcification mimics, ranging in size and density. For the experiments with sDBT, three, 

four, and five cm thick stacks were usually studied, as this is the typical range for compressed 

human breast thicknesses during mammography. The CIRS Imaging phantom recreates the 

clinical situation in which background tissues at different depths obscure features-of-concern 

when the 3D breast anatomy is collapsed into a 2D image. The CIRS Biopsy phantom 
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reproduces a 4.5 cm-thick compressed breast that contains dense masses and microcalcification 

mimics embedded in gel with a consistency and shape similar to breast tissue [CIRS 2020b] 

(Figure 3.1C).  

 
Figure 3. 1. Photographs of the three breast-mimicking phantoms used in this dissertation work.  
Each phantom, including the American College of Radiology mammography accreditation 
phantom (A), the CIRS Model 020 BR3D Breast Imaging Phantom (B), and the CIRS Model 
013 Stereotactic Needle Biopsy Training Phantom (C), contained unique combinations of 
pathology and background. 
 
 For some experiments, the phantoms were customized. For example, in order to simulate 

contrast-enhanced 3D breast imaging, a 1-cm thick acrylic plate was inserted between 

background slabs of the CIRS Imaging phantom at different depths [Puett 2018b]. The 

customized acrylic plate contained drilled wells into which iodinated solutions were added. The 

2.5 mm deep wells had diameters of 0.5, 1.0, 1.5, and 2.0 cm and held iodinated contrast 

(iohexol) diluted with water to concentrations of 0, 1.0, 2.5, 5.0, 10, and 15 mg/ml, simulating 

the tissue concentrations achievable during human contrasted mammography. Contrast 

concentrations in imaging studies are often reported as area densities to allow correlation with 

signal intensities over a defined region in the image. The area densities used in these experiments 

ranged from 0 to 3.75 mg/cm2, reproducing those noted in clinical trials of contrast-enhanced 

mammography [Jong 2003]. For another set of experiments, in order to determine how well the 

processing algorithms could isolate pathology by reducing the obscuring effects of overlapping 

tissues present at other depths, the CIRS Biopsy phantom was stacked above a single background 

A B C
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slab of the CIRS Imaging phantom. This artificial combination created the situation in which the 

mass features were separated in depth from the swirled background features.    

3.4.2 Lumpectomy specimens 
 
 Although breast-mimicking phantoms provide a standardized target, imaging resected 

breast specimens offers a good opportunity to assess the clinical value of the information 

displayed in images, since pathology is available to provide diagnostic and ground truth 

information. This work included a comparison of images of lumpectomy specimens collected by 

sDBT and standard breast imaging techniques [Tucker 2014a, Puett 2019a]. Twenty-three 

women with Breast Imaging and Reporting Data System (BIRADS) 4 or 5 lesions (“suspicious 

abnormality” or “highly suspicious for malignancy”) were recruited following study approval by 

the University of North Carolina at Chapel Hill Institutional Review Board (IRB). The 

concerning breast lesions had been discovered and evaluated by standard screening and 

diagnostic imaging, and the patients were awaiting lumpectomy following a needle localization 

procedure. Following removal, the specimens were handled according to the standard North 

Carolina Cancer Hospital protocol, which included gently compressing them in a customized 

container over a perforated grid prior to magnified (1.8x) 2D digital mammography in order to 

define lesion margins (Figure 3.2). The grid is identified by a number-letter combination, 

providing a background in the x-ray image to localize the identified pathology. Following this 

standard imaging step, the contained specimens were also imaged by sDBT and conventional 

moving-source DBT, after which they were transferred to the Department of Pathology.  
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Figure 3. 2. Photograph of the stationary digital breast tomosynthesis (sDBT) system used to 
image lumpectomy specimens along with an example projection image. The lumpectomy 
specimens were transported and imaged in standard specimen containers (A), the floor of which 
contained a grid of identified holes to localize pathology. The radiographic appearance of the 
lumpectomy specimen in the container can be appreciated in this central projection image 
acquired by sDBT (B). The information in the projection image is used to reconstruct the 3D 
image stack. Note the absence of metal artifact at the projection level, compared to the prominent 
artifact present in the reconstructed image slice of a similar specimen (Figure 2.8). Figure 
adapted from [Tucker 2014a] and [Puett 2019a]. 
 
3.4.3 Patient selection for human study 
 
 Although imaging resected breast specimens provides experience with human tissue, 

testing the clinical utility of an imaging device requires assessing its performance through human 

study. An IRB-approved and HIPAA-compliant prospective study (ClinicalTrials.gov 

NCT01773850) provided the initial quantitative assessment of sDBT performance at the clinical 

level, comparing sDBT to standard 2D mammography [Lee 2019]. This study recruited 55 

women between May 2014 and February 2016 to get standard two-view [craniocaudal (CC) and 

mediolateral oblique (MLO)] imaging by sDBT following the discovery of a “suspicious 

abnormality” (BIRADS 4) by standard screening digital mammography at our Breast Imaging 

Clinic. Of this group, 4 underwent biopsy before the sDBT was obtained and were excluded. The 

A B
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sDBT images were unavailable in another 8 because of an issue coordinating the detector and 

source array. Therefore, images from 43 women were available for analysis. The average age of 

the participants completing the study was 56.7 +/- 12.7 years (35 to 83), of whom 64% were 

considered to have dense breast tissue (BIRADS density categories C or D) [Lee 2019]. Of the 

43 subjects included in the final analysis, 12 cases of malignancy (28% of the study population) 

were identified by pathology on specimens obtained by ultrasound-guided core needle biopsy, 

stereotactic biopsy, or a surgical excision following needle localization. The final pathologic 

diagnoses included six infiltrating ductal carcinomas, five intraductal carcinomas, and one 

invasive lobular carcinoma.  

3.4.4 Reader selection 
 
 There are objective measures of image quality, such as the detectability index, which 

integrate measures of contrast, resolution, and noise into a composite value. These tools are 

useful for quantifying task-specific and regional image information and were used extensively in 

this dissertation work to develop and test image processing algorithms. However, image quality 

at the clinical level is best determined by the visibility of diagnostically-important features in the 

images presented to readers. As such, understanding the clinical potential of a new imaging 

technology requires studies that assess reader performance (diagnostic accuracy) and preference 

when interpreting images generated by the experimental technology relative to the accepted 

standard. As such, readers, like patients, needed to be recruited for participation in some of the 

studies included in this dissertation [Lee 2019, Puett 2019a]. Previous work has shown that 

reader experience is important, demonstrating differences in the performance of readers with and 

without at least 10 years of breast reading experience [Wallis 2012]. As such, readers with 

fellowship training in breast imaging and who had at least a decade of experience with 
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mammography were recruited. Among this group, there was a broad range of experience with 

DBT, ranging from no experience to 5 years, allowing some appreciation of the effect of DBT 

training and experience on reader performance [Lee 2019].   

3.5 Data collection methods 
 
3.5.1 Acquiring images 
 
3.5.1a Differences in the breast imaging systems 
 
 During the course of this dissertation work, images were acquired with several different 

breast imaging modalities, including 2D full-field digital mammography and conventional, 

moving source DBT. These systems provided commercially-available and state-of-the-art 

references against which sDBT was compared. When imaging patients and patient samples 

(lumpectomy specimens) at the North Carolina Cancer Hospital, standard screening 2D 

mammograms and magnified 2D mammograms were obtained by a Senographe Essential 

(General Electric, GE Healthcare, Milwaukee, WI, USA) device that used Mo and Rh anode and 

filter combinations under the control of a proprietary automatic optimization of parameters 

(AOP) mode to deliver x-ray beams from nominal focal spots measuring 0.3 IEC for patient 

screening and 0.1 IEC for magnified imaging. The mammograms were processed through 

Premium View (GE Healthcare, Milwaukee, WI USA). Some phantom-based experimentation 

was also carried out at the Duke University Medical Center, with imaging under the supervision 

of a medical physicist. 2D imaging in the Duke system utilized a commercially-available Selenia 

Dimensions 2D and 3D mammography system (Hologic, Inc., Marlborough, MA, USA). 

Conventional, or moving-source, DBT images were also collected using the Selenia Dimensions 

2D and 3D mammography system, since this system provided the framework upon which the 

CNT-enabled sDBT system was constructed (see 3.5.1b Operating the sDBT system for clinical 
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imaging). The Selenia Dimensions system was operated using the Auto-Filter setting and run in 

the Combo HD mode, which automatically selected the dose and anode/filter combination. 

Additionally, when operated in the Combo HD mode, the Selenia Dimensions system generated 

a standard “processed” 2D mammogram as well as a synthetic mammogram termed C-View 

(software version 2.1.1.1) (see 2.6 The image processing chain that generates sDBT images and 

the value of the synthetic mammogram). This software version produced the C-View image 

using a proprietary forward projection of the reconstructed 3D image space, which itself was 

generated by a filtered back-projection approach [Smith 2016] (see 3.5.3d Reconstructing 3D 

images from 2D projections and 3.5.3e Forward projecting the 3D image space into synthetic 2D 

mammograms). In contrast, the sDBT system used a fixed anode/filter combination, with the 

exposure being manually selected to match the total entrance dose suggested for a conventional 

DBT scan of the same object, and reconstruction was accomplished using a customized algebraic 

iterative technique [Wu 2015, Puett 2020a] (see 3.5.3d Reconstructing 3D images from 2D 

projections).  

 Since commercially-available 2D and 3D mammography systems provided references 

against which sDBT was compared, it was important to recognize differences in their 

technological specifications in order to interpret the results of experiments designed to compare 

their performance. The resolution of an imaging system is related to its geometry, more 

specifically, the sizes and relative locations of the anode focal spot of the x-ray source and the 

detector pixel (see 2.4.2 Contrast and resolution). Some conventional DBT devices, including the 

parent DBT device from which the sDBT systems were built, move the source without 

interruption to collect the series of projection views (see 2.2.4 The clinical value and technical 

limitations of conventional 3D mammography). These continuous-motion systems have an 
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asymmetric focal spot that is elongated in the travel direction of the source due to motion blur. 

The actual size depends on the travel speed and dose rate, which determines how long the x-ray 

“on-time” must be to deliver the required dose. Since the sDBT sources are fixed, their focal 

spots are isotropic and have been measured to be 0.9 mm at the full-width-at-half-maximum 

(FWHM) [Tucker 2014b], with the potential to reach 0.6 mm FWHM, if electronic focusing of 

the CNT cathode-generated electron beam is employed [Qian 2012].  However, in order to 

achieve an adequate dose rate to maintain an acceptably-short study duration given the heating 

constraints with a stationary anode, electronic focusing was not used in the experiments reported 

in this dissertation work. The sDBT detectors remained original to the DBT system. They used a 

direct conversion amorphous-Selenium (a-Se) photoconductor system, which could be operated 

in a binned mode with a pixel size of 140 µm or a 70 µm “full-resolution” mode.  

 As an example of the differences in the performance characteristics of some of the 

imaging devices used in these experiments, Table 3.1 compares the key operating parameters for 

the commercial 2D and 3D systems and sDBT when imaging breast-mimicking phantoms [Puett 

2019a, Puett 2020a], identifying their differences in geometry, focal spot size, beam filtration, 

and detector pixel size, since these parameters have direct impact on the quality of the images 

they produce.  
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Table 3. 1. A comparison of the operating parameters of full field digital mammography, 
conventional digital breast tomosynthesis (DBT), and stationary digital breast tomosynthesis 
(sDBT), identifying similarities and differences that have a direct impact on the image quality 
measurements used in this dissertation work. The operating parameters are displayed for both 
phantom imaging [Puett 2020a] as well as lumpectomy specimen imaging [Puett 2019a]. *Focal 
spot motion was calculated using the approach described in [Marshall 2012]. The extent of this 
motion depended on the x-ray exposure time per projection. Of note, reflecting the differences in 
their shapes, the focal spot was modeled as a rectangle for the moving-source DBT system and 
as a Gaussian for sDBT, with the reported value being the full width at half maximum (FWHM). 
**By default, sDBT uses the detector in “full resolution” mode, employing a detector pixel size 
of 70 µm. However, for specimen imaging, the projection images were also binned to 140 µm in 
post-processing to match the detector pixel size of the conventional DBT system [Puett 2019a]. 
***Microcalcification sizes in specimen images collected by conventional DBT and sDBT were 
compared to magnified (1.8x) mammography, and therefore the reconstructed voxels for 
tomosynthesis imaging were generated at 1.8x magnification of the “full resolution” detector. SD 
= scan direction, NSD = non-scan direction, FWHM = full-width-at-half-maximum.  
 
 Measurements of resolution and noise were used to quantify differences in the 

performance of the standard 2D FFDM, conventional moving-source DBT, and carbon 

nanotube-enabled sDBT devices. To provide the most direct comparison, resolution and noise 

were measured in “raw” images (see 2.6 The image processing chain that generates sDBT 

images and the value of the synthetic mammogram), including the raw FFDM image and the raw 

central projection images of conventional DBT and sDBT when the x-ray source was located 

Phantom Imaging Specimen Imaging
Parameter FFDM DBT sDBT DBT sDBT
Static Focal Spot Size 
[SD/NSD] (mm)

0.43/0.52 0.46/0.53 0.9/0.9 
(FWHM)

0.46/0.53 0.9/0.9
(FWHM)

Focal Spot Motion [SD] (mm) - 0.99* - 1.65* -

Anode Material W W W W W
Filter Material (Thickness in mm) Rh (0.05) Al (0.7) Al (1) Al (0.7) Al (1)
Angular Span (degrees) - 15 28 15 28
Number of projection views 1 15 15 15 15
Source-to-Image Distance (mm) 700 700 700 700 700

Detector Pixel Size (µm) 70 140 70 140 70/140**
Reconstructed Voxel Size (µm) - 100 70 39*** 39***
Peak Energy (kV) 28 30 35 26 26



www.manaraa.com

 

  52 

directly above the detector (0° projection angle). Resolution was quantified as the modulation 

transfer function (MTF). The MTF was calculated from the changing signal intensity off of a thin 

tungsten edge positioned ~ 6 cm from the edge of the detector and 4.5 cm above the detector 

table. The metal edge was placed at a slight angle relative to the detector pixel matrix. Noise was 

quantified as the radial average of the 2D normalized noise power spectrum (NNPS) by 

measuring the NPS in half-overlapping areas measuring 128x128-pixels when a 4.5-cm-thick 

polymethylmethacrylate (PMMA) slab was imaged. A second-order polynomial was used for 

detrending, and the measurements were normalized by the mean signal over a large area of the 

image. 

 The MTF and NNPS measured in the raw FFDM image and central projection images 

acquired by DBT and sDBT are displayed in Figure 3.3. Note the similar MTF curves for sDBT 

and DBT, as measured at a height of 4.5 cm above the detector table and using each system’s 

default operational settings. As expected given its smaller focal spot size (Table 3.1), FFDM 

produced a raw image with a higher resolution compared to the raw projection images of DBT 

and sDBT (Figure 3.3A). Also, noise was higher in the projection images acquired by DBT and 

sDBT compared to FFDM (Figure 3.3B). Again, this finding was expected, since only a fraction 

of the total study dose is delivered during the acquistion of each projection image during 

tomosynthesis.  These differences in resolution and noise can be anticipated to influence image 

characteristics and feature display in the FFDM, conventional DBT, and sDBT images. 
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Figure 3. 3. Graphic display of resolution and noise in the three different breast imaging 
modalities compared in this dissertation work, including standard mammography, conventional 
digital breast tomosynthesis, and stationary digital breast tomosynthesis (sDBT). Resolution was 
measured as the modulation transfer function (MTF) in the raw 2D full field digital 
mammography (FFDM) image and raw central projection images from conventional digital 
breast tomosynthesis (DBT) and carbon nanotube-enabled sDBT at a height of 4.5 cm above the 
detector table and using each system’s default operational settings. MTF was measured in both 
the scan direction (SD) and non-scan direction (NSD). The 1D normalized noise power spectrum 
(NNPS) was calculated as the radial average of the 2D NNPS. Figure adapted from [Puett et al. 
2020a]. 
 
3.5.1b Operating the sDBT system for clinical imaging  
 
 The first-generation sDBT device was used for patient imaging. It was constructed from a 

Selenia Dimensions DBT system (Hologic, Inc., Marlborough, MA, USA) by replacing the 

single, moving thermionic x-ray source with an array of 31 fixed CNT-enabled sources (Figure 

3.2A) [Tucker 2013]. Much of the remainder of Hologic system was unchanged, including the 

gantry that rotated the source array between the standard craniocaudal (CC) and mediolateral 

oblique (MLO) view orientations, the breast compression plates, and the detector. An electronic 

control system (ECS) operated the individual sources and coordinated source firing with detector 

activity. During a DBT study, the total radiation dose delivered to the target is divided among the 

multiple projections. Each projection image is therefore collected at a relatively low dose, and as 

a result, testing is needed to optimize the number and distribution of the projection views to 

maximize the image quality at each view. Pre-clinical testing of this sDBT system demonstrated 

an optimized configuration of 15 sources fired with equal doses across an angle-span of 28° 

A B
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[Tucker 2013]. Ensuring a safe operation during human study was critical, with doses 

determined by the thickness of the compressed breast. Over the course of human testing, the 

sDBT system used exposures up to 90 mAs over a range of 29 to 39 kVp, based on breast 

thickness, with 1 mm Al filtration. These exposures were set to match those of the Hologic DBT 

system from which the sDBT device was constructed, and a radiation safety inspection assured 

dose compliance with the Mammography Quality Standards Act (MQSA) when the sDBT device 

began clinical testing in 2014. To ensure a stable source performance over time, dose 

information was again collected on the sDBT system in 2018 [Lee 2019]. The surface entrance 

dose was measured directly as the incident air kerma (mGy) using a Radcal Accu-Pro (9096) 

dosimeter and 10x6-6M mammography ion chamber (Radcal, Monrovia, CA USA) positioned at 

different heights above the detector. The surface entrance dose was measured as a function of the 

compressed breast thickness. This testing demonstrated that the sDBT system delivered entrance 

doses comparable to standard mammography (Figure 3.4) [Lee 2019].  

 

Figure 3. 4. Graphic display comparing doses of standard mammography and stationary digital 
breast tomosynthesis (sDBT) during human study. The entrance dose was measured as a function 
of breast thickness for the Senographe Essential mammography system (grey diamonds) and 
sDBT (black line). Doses are reported as the incident air kerma in mGy and were measured using 
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a mammography ion chamber dosimeter for sDBT. For each mammogram, doses were obtained 
from the DICOM header. Figure adapted from [Lee 2019]. 
 
 Obtaining a full patient study in as short a time as possible is important, as breast 

compression can be uncomfortable and patient motion will blur the image. When operated 

without electronic focusing, CC and MLO imaging by sDBT could be accomplished in less than 

5 seconds [Lee 2019].   

3.5.1c Configuring the sDBT system for contrast-enhanced imaging  
 
 To date, most clinical experience with 3D contrast-enhanced (CE) breast imaging has 

been with gadolinium-enhanced MR [Argus 2010]. However, given the high cost and limited 

availability of MR compared with radiation-based imaging, research continues into the 

development of CE-DBT. For radiation-based techniques, such as DBT, iodine is the contrast 

agent of choice. However, CE mammography has shown only a minimal lesion enhancement 

above background (BKG) following standard intravenous iodine dosing and has demonstrated 

that the differences distinguishing benign from malignant enhancement patterns in breast lesions 

are subtle [Jong 2003]. As a result, two imaging steps with subtraction are needed for CE 

mammography and CE-DBT. Subtraction removes the BKG signal and thereby improves 

contrast in the enhanced tissue. These experiments with sDBT simulated both temporal 

subtraction (TS) and dual-energy subtraction (DES) protocols. TS involves imaging before and 

after the administration of contrast using a photon energy above the characteristic absorption (K-

edge) for iodine, whereas DES compares images collected with photon energies above and below 

the K-edge [Hill 2016]. Although this critical subtraction step during CE imaging has been 

studied with conventional, moving-source DBT previously [Ikejimba 2014, Chen 2013], this 

work was the first to incorporate scatter correction with a stationary system for CE-DBT 

imaging. Figure 3.5 displays representative images of TS and DES as they appear through the 
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image processing chain, allowing an appreciation of the differences in the two image acquisition 

protocols and the key subtraction step in both.   

 
Figure 3. 5. Representative images through the post-acquisition processing steps during a study 
of contrast-enhanced stationary digital breast tomosynthesis (sDBT). Both temporal subtraction 
(TS) and dual energy subtraction (DES) protocols were used to collect projection views of a 5-
cm thick phantom, customized with wells containing iodine at a concentration replicating those 
achieved during patient imaging. Note the “cupping” artifact, which refers to the intensity 
differences between the periphery and central regions of the image, present in the high energy 
normalized projections and persisting in processed DES images without scatter correction. The 
blue line through the high-energy DES normalized projection image identifies the path of the line 
profile analyzed in Figure 4.4. Figure adapted from [Puett 2018b].     
  
 In order to replicate tube settings used in the clinic, the sDBT source array delivered a 

total exposure of 88 mAs at 49 kVp for TS and high-energy (HE) DES imaging and 30 kVp to 

collect the low-energy (LE) DES images. A 0.25-mm copper filter was added to the standard 0.5 

mm aluminum filter during HE imaging to remove photons with energies below the iodine K-

edge (33.2 keV). The contrasted breast environment was simulated using customized breast-

mimicking phantoms (see 3.4.1 Breast-mimicking phantoms). 
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3.5.2 Measuring scatter  
 
 One of the goals of this work was to model scatter with the sDBT system in order to 

develop correction algorithms that could be applied during post-acquisition processing to 

improve image quality. This required measuring scatter across a range of breast thicknesses and 

attenuation features, with a specific concern over scatter during contrasted imaging, since scatter 

is most problematic off highly-attenuating features during x-ray imaging. In these studies, scatter 

was measured indirectly using a beam-pass primary sampling device (PSD) to isolate the 

primary component of the total signal [Inscoe 2013, Puett 2018b]. The protocol involved 

collecting a second series of projection images immediately after the initial scan with the PSD 

positioned on the compression plate between the phantom and x-ray source. The PSD was a 2-

mm thick stainless-steel sheet with 2-mm diameter holes separated by a center-to-center distance 

of 10.6 mm, resulting in an average of 118 holes located over the phantom. The size and 

separation of the holes was determined mathematically to allow measurement of the non-

deflected x-ray signal reaching the detector when the PSD was positioned just above the target. 

By comparing the total area of the PSD holes with the area of the breast phantom, it was 

determined that collecting the second series of projections with the PSD in place added an 

average of 3% of the radiation dose delivered during imaging without the PSD. Simple 

subtraction of the primary signal from the total signal, measured without the PSD in place, 

allowed calculation of the scatter signal. Although simple in concept, this measure was difficult 

in practice, requiring the development of software that could accurately locate the primary 

signals in the PSD image, measure their strength over a broad intensity range, and then use this 

information to develop a scatter map of the entire target (see 3.5.3b Creating scatter maps) [Puett 

2018b].     
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3.5.3 Processing images  
 
3.5.3a The image processing chain for sDBT in context 
 
 In large part, the work in this dissertation involved experimentation to analyze 

problematic issues with CNT-enabled stationary tomosynthesis, such as scatter and artifact, and 

then use the findings to develop image processing approaches to minimize their effects on the 

final images displayed for interpretation. Although the focus of this work involved breast 

imaging, experimentation with sDBT was actually carried out alongside the pre-clinical 

development and early clinical application of stationary tomosynthesis across a wide range of 

imaging tasks being explored in the Applied Nanotechnology Laboratory. These included dental 

[Inscoe 2018, Puett 2020b], musculoskeletal [Inscoe 2020b], chest [Lee 2018, Gunnell 2019], 

and head [Spronk 2020, Luo 2020] imaging. The image processing approaches developed for 

sDBT were influenced by this broad experience, since each anatomic environment introduced 

unique challenges for processing (see 2.3.2 Carbon nanotube (CNT)-enabled x-ray source arrays 

and stationary digital tomosynthesis (sDT) and APPENDIX: Developing synthetic dental 

radiography). For example, correcting for scatter is critically-important when the target 

environment contains features with widely-varying attenuation properties. In chest imaging, the 

low attenuation airspace regions are adjacent to the highly-attenuating bony thoracic cage and 

the soft tissues of the mediastinum and diaphragm. Similarly, in head imaging, the soft tissues of 

the brain are encased by the dense skull. In these environments, the scatter signal often 

predominates the primary signal in clinically-important regions-of-interest [Ullman 2004].   

 Artifact reduction provides another example of the unique challenges posed by different 

target environments. Reducing artifact around dense features in the breast is important, since 

shadowing and rippling artifact off large calcifications or the metal needles and wires used to 
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guide biopsy obscure information in the image. However, metal artifact reduction (MAR) 

techniques are essential for dental tomosynthesis, as dental pathology is often hidden in the 

artifact-laden image regions adjacent to metal. Examples include recurrent caries adjacent to 

restorations and sites of bone resorption at the bone-metal interface of dental implants. In short, 

the lessons learned from working with stationary tomosynthesis across a range of imaging tasks 

provided much of the background experience used to develop the sDBT algorithms.  

 An overarching goal of this work has been to develop a complete image processing chain 

for sDBT, culminating in the production of a clinically-useful synthetic mammogram (see 2.6 

The image processing chain that generates sDBT images and the value of the synthetic 

mammogram). This goal would advance the evolution of sDBT toward a viable clinical device, 

providing a crucial step for the continued human study of this promising new technology. Given 

the significant clinical benefits of synthetic mammography, including the fact that it may prove 

to be the key advance by which DBT replaces standard mammography as the screening and 

diagnostic breast imaging tool of choice, improving the image processing steps needed to 

generate the synthetic mammogram is an area of very active research by both academic research 

groups and industry. The synthetic mammogram is the product of many computational steps, 

referred to collectively as an image processing chain, with each chain link or processing step 

accomplishing a specific task (Figure 3.6).  
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Figure 3. 6. Overview of an image processing chain applicable to stationary digital breast 
tomosynthesis (sDBT). The image processing chain moves information from the series of 2D 
projection views collected at the time of the study, through a “reconstructed” 3D image space, 
and finally back into a “synthesized” 2D image. For much of this dissertation work, 
reconstruction was accomplished by algebraic iteration, using a customized approach described 
as an adapted fan volume modification of the simultaneous iterative reconstruction technique 
(AFV-SIRT). Specific image processing options (italics) are listed below the step at which they 
are typically applied. Figure adapted from [Puett 2019b]. 

 Each step in the image processing chain must be optimized. Optimization involves 

tradeoffs in the information that needs to be displayed in the image to accomplish the clinical 

task and the complexity of the algorithm, which determines its computational time and computer 

hardware requirements. In large part, processing time reflects the processing power of the 

hardware available for the task. For most of this dissertation work, processing was accomplished 

using an off-the-shelf laptop computer (four-core MacBook Pro with a 2.7 GHz Intel Core i5 

processor). With this device, once a reconstructed image stack was available, forward projection 

(see 3.5.3e Forward projecting the 3D image space into synthetic 2D images) required about 40 

seconds, while artifact reduction (see 3.5.3c Reducing artifact) added an additional 4 seconds and 

background equalization (see 3.5.3f. Equalizing background in the synthetic mammogram) 

around 30 seconds, although processing times varied based on the size of the breast. However, 

given the limited sampling that characterizes tomosynthesis, robust reconstruction approaches 

yield better results. Therefore, when testing the full image processing chain at the clinical level 

by reader study, an algebraic iterative approach developed specifically for the sDBT system was 
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used [Wu 2015] (see 3.5.3d Reconstructing 3D images from 2D projections). As a result of its 

detailed modeling of the system geometry, reconstructing the 3D image stack from the 15 

projection images collected on a 5.5 cm-thick breast required 30 minutes using a dedicated 

computer for this specific task (3.5 GHz 6-core i7-5930K CPU).  

3.5.3b Creating scatter maps 
 
 Correcting for scatter is the mathematical step of adjusting pixel values to remove the 

scatter component from the total signal. In these experiments, scatter was measured indirectly 

using beam-pass collimation to isolate the primary signal [Puett 2018b] (see 3.5.2 Measuring 

scatter). The projection images collected with the PSD contained circular regions of Signal 

against a low Signal BKG. In these experiments, Signal was defined simply as the average of the 

pixel intensity values within a defined region-of-interest (ROI) in the image. The PSD-

collimated projection images were binarized by thresholding, and the circular regions were 

isolated based on their known size. These regions consisted of a central plateau of primary 

photons and a ring of penumbra. The central pixel was identified for each region, and the average 

signal within a 3-pixel radius around the central pixel was defined as Signalprimary. 

Signalscatter was calculated as the difference between Signalprimary and Signaltotal, which was 

the Signal in the same region of the corresponding projection image obtained without the PSD 

[Eq. (3.1)]:  

Signalscatter = Signaltotal – Signalprimary        (3.1)  

Interpolation was used to assign information regarding scatter to pixels located between these 

sampled regions. The result was a scatter “map” unique to each projection image. However, 

different algorithms have been proposed in the literature to generate the scatter map, based on 
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applying direct scatter values [Sechopoulos 2012, Lu 2015] or values incorporating the scatter-

to-primary ratio (SPR) [Yang 2012]. This work compared three approaches for generating pixel-

specific scatter maps, referred to as ScatterMapdirect, ScatterMapSPR, and ScatterMap filtered-

SPR (ScatterMapfSPR) [Wu 2017]. Each approach differed in its application of information 

collected by beam-pass collimation (see 3.5.2 Measuring scatter). 

ScatterMapdirect was simply a biharmonic spline interpolation [Eq. (3.2)] of 

Signalscatter [Eq. (3.1)] determined at the PSD-sampled sites. 

ScatterMapdirect  = Interpolation(Signalscatter )       (3.2)   

Developing ScatterMapSPR was a three-step process. First, SPR was calculated at the 

PSD-sampled sites. Second, biharmonic spline interpolation assigned SPR values to pixels 

between the PSD-sampled sites [Eq. (3.3)]. The final step [Eq. (3.4)] calculated a pixel-specific 

scatter value from SPRinterp to generate ScatterMapSPR:  

SPRinterp = Interpolation(SPRsampled)        (3.3) 

ScatterMapSPR = Signaltotal * (SPRinterp / (1 + SPRinterp))     (3.4) 

  The mathematical steps to develop ScatterMapfSPR can be considered a blend of the 

calculations used to generate the direct and SPR maps described above. First, an SPRdirect value 

was calculated for every pixel using ScatterMapdirect and Signaltotal [Eq. (3.5)].  

SPRdirect = Scatterdirect / (Signaltotal - Scatterdirect)      (3.5) 
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As such, SPRdirect differed from SPRinterp in terms of the information that was 

interpolated from the PSD-sampled sites to pixels between the sampled sites. Next, a scatter 

value was assigned to each pixel using a mathematical step similar to Eq. (3.4). However, 

developing ScatterMapfSPR included the application of a 2-D Gaussian filter (f) to SPRdirect 

[Eq. (3.6)].  

ScatterMapfSPR = Signaltotal * (fSPRdirect / (1 + fSPRdirect))     (3.6) 

A scatter map refers to the collection of all pixel-specific scatter values. Correcting the 

normalized projection image signal (Signalcorrected) for scatter was accomplished by simple 

subtraction [Eq. (3.7)].  

Signalcorrected = Signaltotal – ScaterMapdirect or SPR or fSPR     (3.7) 

3.5.3c Reducing artifact 
 
 Shadowing and rippling artifact off of highly-attenuating or dense features can be 

significant in tomosynthesis images (see 2.5.3 Limited sampling introduces artifact), including 

slices of the reconstructed 3D image stack and synthetic 2D images. These artifacts are not only 

distracting when images are viewed for interpretation, but they can also hide pathology. Hence, 

image processing to correct dense feature artifact is often needed during breast tomosynthesis 

imaging to minimize artifact associated with large calcifications as well as metal wires and clips, 

which may be placed to guide biopsy or be present from previous surgery.  

 The artifact reduction approach for sDBT was integrated into the image processing chain 

at the levels of the projection image and synthetic mammogram (Figure 3.7).  
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Figure 3. 7. Key image processing steps for dense-feature artifact reduction applied to stationary 
digital breast tomosynthesis (sDBT), including examples showing the evolution of the image as 
it progresses through the processing chain. Segmentation and interpolation-based in-painting of 
the dense feature at the level of the projection view was followed by a histogram matching step 
to replace the dense features from the central projection view back into the synthetic 
mammogram. Figure adapted from [Puett 2019b]. 
 

It began with a threshold-based segmentation of the dense features in the projection 

images. New pixel values in the region of the segmented dense features were assigned by 

interpolation-based in-painting, after which the modified projection images entered the 

reconstruction and forward projection steps to produce a synthetic mammogram without the 

dense feature or its associated artifact. Since these dense features can have diagnostic value, they 

were replaced in the synthetic mammogram prior to display. In order to avoid the 

computationally-expensive registration step, the mask from the central projection image was 

used for dense-feature replacement, followed by a histogram matching step to adjust its pixel 

values to be compatible with the synthetic image as a whole. This approach allowed for the same 

mask to be applied to all of the synthetic mammograms, regardless of the various forward 

Reconstruction

Forward	
projection

Feature	
interpolation

Dense-feature	
segmentation

Projection	
image

Dense-feature
replacement

Histogram
matching

Synthetic
image



www.manaraa.com

 

  65 

projection steps used to generate them (see 3.5.3e Forward projecting the 3D image space into 

synthetic 2D mammograms). Additionally, given the relatively high levels of noise in the 

projection images of breast tissue, a morphological opening algorithm was used during 

segmentation to prevent features smaller than 4 square pixels from being segmented. Finally, 

since many of the dense features in breast tissue have poorly defined edges, such as the irregular 

margins of calcifications, the mask was dilated by 3 pixels to ensure segmentation of the feature 

in its entirety. This small amount of over-segmentation was unlikely to interfere with the 

visualization of important features, as this information was placed back into the synthetic image 

prior to display. 

3.5.3d Reconstructing 3D images from 2D projections  
 
 Reconstruction refers to the processing steps that generate the 3D stack of image slices 

from the information available in the multiple 2D projection views collected at the time of the 

study (see 2.6 The image processing chain that generates sDBT images and the value of the 

synthetic mammogram and 3.5.3a The image processing chain for sDBT in context). During the 

course of this dissertation work, a flexible reconstruction algorithm was developed to test 

different reconstruction approaches, including direct filtered backprojection and algebraic 

iterative reconstruction, that could be applied to different system geometries. It provided a tool 

for simulating the application of CNT-enabled stationary tomosynthesis to many different 

imaging tasks, accommodating the wide variety of different source arrays currently being 

studied. However, when experimentation was carried out with the sDBT systems at the clinical 

level, highly customized reconstruction algorithms, which had previously been developed 

specifically for the sDBT system, were employed. These included a filtered backprojection 

approach developed by Real Time Tomography (Piccolo 4.0.5, Real Time Tomography LLC, 
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Villanova, PA) [Lee 2019] and an adapted fan-volume modification of the simultaneous iterative 

reconstruction technique (AFV-SIRT) developed by a previous graduate student in the Applied 

Nanotechnology Laboratory [Wu 2015]. The latter approach with modifications was used in the 

optimized image processing chain to generate synthetic mammograms for sDBT [Puett 2019b, 

Puett 2020a]. 

3.5.3e Forward projecting the 3D image space into synthetic 2D mammograms 
  
 Forward projection refers to the processing steps that integrate the information in the 

reconstructed 3D image space into synthetic 2D images (see 2.6 The image processing chain that 

generates sDBT images and the value of the synthetic mammogram and 3.5.3a The image 

processing chain for sDBT in context). A specific Aim of this dissertation work was to develop a 

synthetic image capability for sDBT, and in the course of doing so, two processing approaches 

were explored and published. Based on a method developed previously [Diekmann 2009], an 

early approach incorporated tunable parameters into the forward projection step [Puett 2019b], 

thereby providing a mechanism to explore the effects of changes in the forward projection 

calculations on the display of clinically-important features, such as soft tissue masses and 

microcalcifications. This tunable forward projection algorithm ordered the intensities of the 

discretized 3D image space through depth and applied polynomial functions of varied order (xN, 

where N = polynomial order) to weight these intensities before integrating through depth to 

assign an intensity value to the corresponding pixel in the synthetic image (Figure 3.8).  



www.manaraa.com

 

  67 

 

Figure 3. 8. Pictorial representation of the weighted approach to forward projection, which was 
used in the image processing chain to generate synthetic mammograms from the information 
contained in the projection images collected by stationary digital breast tomosynthesis (sDBT). 
The weighting function consists of polynomials of varied order (xN) that exist between the 
extremes of zero-order, yielding an average-intensity forward projection, and infinite-order, 
yielding a maximum-intensity projection. Figure adapted from [Puett 2019b]. 
 

The range of weighted functions existed between the extremes of an average-intensity 

projection (zero-order) and maximum-intensity projection (infinite-order). Experimentation was 

performed using breast mimicking phantoms as well as patient images containing suspicious 

breast lesions. Findings through phantom-based experimentation using this tunable approach 

toward forward projection guided the development of computationally more efficient and 

clinically more useful algorithms [Puett 2020a].  

 The optimized forward projection approach developed through phantom-based 

experimentation for advancement to testing at the clinical level incorporated feature 

enhancement achieved through a combination of processing steps. Figure 3.9 provides an 

overview of the key processing steps that follow reconstruction, including feature identification, 

feature weighting, and weighted forward-projection, which taken together sought to enhance the 

display of the microcalcifications and masses in the final synthetic images.   
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Figure 3. 9. Schematic diagram of the flow of information through the feature identification, 
weighting, and weighted-recombination steps used to generate synthetic mammograms for 
stationary digital breast tomosynthesis (sDBT). These processing steps sought to separate 
features-of-interest, such as microcalcifications and masses, from the obscuring effects of 
background features at different depths and them emphasize them to produce pathology-
enhanced synthetic images. Figure adapted from [Puett 2020a]. 
 

The process of identifying features-of-interest in the sDBT 3D image space began with a 

Laplacian decomposition of each slice in the reconstructed image stack (Figure 3.10) [Puett 

2020a]. As has been demonstrated for both standard and synthetic mammography, decomposing 

the image into its high, mid, and low-frequency components yields modified images emphasizing 

different feature-elements of clinical importance [Wei 2005, Wei 2019]. Microcalcifications and 

mass edges are high-frequency components, while the body of masses tend to be mid-frequency 

components. Through decomposition, the initial reconstructed image stack was separated into 

three separate sub-stacks, each containing slices filtered by frequency.  
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Figure 3. 10. Pictorial representation of the use of Laplacian decomposition as a processing step 
during feature-identification. Laplacian decomposition of each slice in the reconstructed 3D 
image stack produced three frequency-sorted sub-stacks. Since microcalcifications and mass 
edges tended to be captured in the high-frequency images, the bodies of masses in the mid-
frequency images, and background tissues in the low-frequency images, this processing step 
provided an initial separation of diagnostically-important features.  
 

Following decomposition, microcalcification and mass features were identified and then 

weighting functions were generated for each specific feature-of-interest (Figure 3.11). Feature 

detection was a key step in the image processing chain. Many different feature-detection 

algorithms have been developed, each involving trade-offs in computational efficiency and 

utility. In this study, microcalcifications were identified and weighted by sorting the high-

frequency sub-stack by intensity through depth (Figure 3.11A). Combining information from the 

slices containing the brightest features was equivalent to performing a maximum-intensity 

forward projection through the stack. The microcalcification weighting-function developed for 

sDBT emphasized the two brightest-intensity slices and the two darkest-intensity slices. 

Including the darkest two slices in the weighting function helped to remove the bright streak 

artifacts associated with the edges of metal and large calcifications.  
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 Mass identification and weighting were done in the mid-frequency sub-stack (Figure 

3.11B). Initial phantom-based work generating sDBT synthetic images used a blob-enhancement 

filter to identify mass-like features against a uniform background [Puett 2020a]. However, 

because of the complex backgrounds and varied feature characteristics presented by the CIRS 

Imaging phantom and clinical images evaluated in this study, the blob-enhancement filter did not 

perform well, leading to the approach of identifying masses in the mid-frequency sub-stack as 

maximally stable extremal regions (MSER) using the MSER algorithm in MATLAB (The 

MathWorks, Inc., Natick, MA) [Puett 2020a], which is an approach that has been utilized by 

others to detect masses in standard mammograms [Hassan 2019]. Following detection, a smooth 

weighting function with a depth thickness of 1 cm was generated through the mass features in 

order to emphasize the mass while de-emphasizing background features at other depths. The 

mass-weighting function was then resized to match the size of the high-frequency sub-stack in 

order to register the body of the mass with its boundary, since mass edges are high-frequency 

image components and were therefore best represented in the high-frequency sub-stack. The 

weighting function was optimized to emphasize the features-of-interest and de-emphasize 

overlapping structures present at different depths. 
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Figure 3. 11. Schematic representation of the feature identification and weighting steps used to 
emphasize pathology in the synthetic mammograms generated for stationary digital breast 
tomosynthesis (sDBT), including example images demonstrating the information being enhanced 
by the processing. Sorting the high-frequency sub-stack by intensity through depth identified 
microcalcifications (A). The example images show the sorted slices in the reconstructed image 
stack containing the most intense (brightest) and least intense (darkest) features. An optimized 
weighting function combined the information in these images, thereby emphasizing the 
calcification while minimizing streak artifacts. Masses (B) were identified in the mid-frequency 
sub-stack as maximally stable extremal regions or by the application of a blob filter. A weighting 
function emphasized the mass while de-emphasizing background features at different depths. 
 

Forward projection of the weighted and unweighted, frequency-sorted sub-stacks yielded 

a set of 2D images, which were then blended using a weighted recombination step to generate a 

standard synthetic mammogram as well as two pathology-enhanced synthetic images, one 

dedicated to the display of microcalcifications and the other to the display of mass lesions (Figure 

3.12).  
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Figure 3. 12. Schematic representation of the final weighted recombination step used to generate 
pathology-enhanced synthetic mammograms for stationary digital breast tomosynthesis (sDBT), 
including examples of synthetic images of breast-mimicking phantoms. Forward projection of 
both the weighted and unweighted frequency-sorted sub-stacks produced a set of 2D images. 
Weighted recombination blended these images into a standard synthetic mammogram as well as 
two pathology-enhanced synthetic images, one dedicated to the display of microcalcifications 
and the other to the display of masses. The blue arrow shows the path of microcalcification-
weighted information, and the green arrows show the path of mass-weighted information. 
 
 To summarize, in a general sense, the image processing steps developed through this 

work to generate the synthetic mammogram sought to combine the benefits of the 3D image 

stack, which separates features-of-interest through depth, with the efficiency of the 2D 

mammogram. To do so, the processing identified mass and microcalcification features in the 

image slices of the reconstructed image stack and then emphasized these features-of-interest over 

background features present at different depths when displayed in the final synthetic image. The 

key processing steps combined Laplacian decomposition, feature weighting through depth, and 

weighted re-combinations of slices emphasizing different image characteristics to produce a 

unique set of synthetic images, including a standard synthetic image as well as synthetic images 

dedicated to the display of specific pathologies. The decision to generate separate pathology-

enhanced images was based on the recognition of the significant differences in the imaging 
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characteristics of masses and microcalcifications and the very different processing steps needed 

to optimize their display. Additionally, this decision was informed by experience developing 

image processing approaches for synthetic dental radiography (see APPENDIX: Developing 

synthetic dental radiography) and the realization of the potential value of offering a set of 

synthetic images, each displaying unique information.    

3.5.3f. Equalizing background in the synthetic mammogram 
 
 During patient imaging, the outer non-compressed breast tissue is typically thinner than 

the more central compressed tissues. As a result, the background image signal in the peripheral 

regions of the breast decreases toward the skin line, leading to decreased feature visibility in 

these regions and loss of the clinically-important skin line. Processing is needed to provide a 

stable background between the central and peripheral breast image regions and establish a 

continuous skin line. The background equalization approach (Figure 3.13) developed for this 

study worked with a factor-4 down-sampled version of the synthetic mammogram to improve 

computational efficiency. The peripheral breast region was first segmented using k-means 

clustering [Lloyd 1982]. Next, the background signal in the peripheral region was estimated by 

fitting a smoothing spline to each row and then each column in the down-sampled image. The 

background-fit image was then up-sampled to the original size of the synthetic mammogram and 

used to normalize the background signal. 
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Figure 3. 13. Schematic overview of the background-equalization algorithm applied to a 
synthetic mammogram generated by stationary digital breast tomosynthesis (sDBT), including 
representative examples of the changing appearance of an actual breast image in response to 
these processing steps. First, the synthetic image was down-sampled by a factor of 4 to improve 
the computational efficiency (A). Next, the peripheral breast region was segmented using a k-
means clustering approach (B). A smoothing spline was fit to the changing background signal in 
this peripheral region (C). The background-fit image was then up-sampled to the original size of 
the synthetic mammogram and used to normalize the background signal (D). Figure adapted 
from [Puett 2019b]. 
 
3.5.4 Displaying images 
 
 The equipment used to display breast images has a significant impact on the visibility of 

features, as a high resolution is needed to visualize small structures such as microcalcifications. 

The work in this dissertation was made possible by the state-of-the-art hardware and software 

supporting the digital imaging systems used by the UNC Department of Radiology and the 

imaging research facilities. These included software with Digital Imaging and Communications 

in Medicine (DICOM) sharing capability as well as access to 5-megapixel display monitors with 

reader ability to manipulate the image display.       
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3.6 Data analysis methods 
 
3.6.1 Measuring image quality and feature detectability 
 
3.6.1a Quantifying signal and noise 
 
 Assessing the quality of the images generated by the sDBT system played a key role 

throughout the work presented in this dissertation. There are many objective measures of the 

information displayed in an image based on the intensities or grayscale values present in the 

image itself. The average intensity over a defined region is typically known as the Signal, while 

the variability in the intensity over a defined region with stable features reflects Noise. Ratios 

involving Signal and Noise, such as Contrast [(Signalfeature – SignalBKG)/SignalBKG] and the 

Signal-difference-to-Noise ratio (SdNR) [Signalfeature – SignalBKG/Noise], also referred to as the 

contrast-to-noise ratio (CNR), provide insight regarding the ability to see an image feature 

against its background. As such, these measures are useful and were calculated in many of the 

experiments in this dissertation. For example, comparison of the display of the microcalcification 

and mass mimics in the 2D images of breast-mimicking phantoms produced by FFDM and the 

synthetic images generated by the DBT and sDBT systems involved measuring the feature’s 

contrast, signal-difference-to-noise ratio (SdNR), and full-width-at-half-maximum (FWHM). 

FWHM can be used to define the edges of a feature based on its relative intensity. As such, it 

provides a useful tool to compare feature sizes in images with different intensity levels. 

However, FWHM can also be used as a reflection of blur when imaging small features, and as 

such, it can provide insight into the resolution of an imaging system. Measuring 

microcalcification size is a good example (see 3.6.1c Measuring microcalcification size). As the 

size of the microcalcification approaches the resolution the system, it appears blurred in the 

image. This blurring is a progressive change of increasing relative area but decreasing Signal 
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intensity, as microcalcifications of smaller and smaller size are displayed. Eventually, the 

contrast becomes too low to distinguish the microcalcification from its BKG, and therefore, it 

cannot be detected (see 4.3.1Visualizing microcalcifications in lumpectomy specimens).  

 Contrast was calculated as the difference between the mean signal intensity of the feature 

and its BKG, normalized by the mean BKG intensity. In this work, the mean intensity of the 

feature was calculated in the circular area centered in the feature and extending to one-half the 

radius of the feature, and the mean BKG intensity was calculated in the concentric ring around 

the feature at a distance of 1.5 times the feature’s radius. Noise was quantified as the standard 

deviation of the pixel intensities within the background. To measure the FWHM, 1D Gaussian 

functions were fit through the center of each microcalcification in the x- and y-directions. Ten-

fold interpolation of each Gaussian function allowed for a more precise measurement of the 

FWHM, which was calculated as the average of the FWHM measured in the x- and y-directions.   

3.6.1b  Calculating detectability indices 
 
 Much of the work reported in this dissertation required an objective measure of the 

visibility or detectability of a feature-of-interest in an image, such as a mass or 

microcalcification. In this way, quantitative comparisons could be made between images 

produced by different modalities or generated by different processing techniques.  A detectability 

index (d’) provided this objective measure. The calculation of d’ was based on a published 

method [Ikejimba 2014], which was adapted to account for the unique processing steps used to 

generate sDBT-based images, including the synthetic mammogram [Puett 2019b]. d’ 

incorporated measures of overall image quality (resolution and noise) and characteristics of the 

feature-of-interest (size and contrast) to yield a single value reflecting visibility of the feature. 

For application with the sDBT system, resolution was measured as the MTF calculated from the 
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changing intensity values off a straight metal edge, and noise was quantified as the averaged 

noise periodogram measured in featureless breast-mimicking phantoms ranging from 3-5 cm in 

thickness. The resolution/noise ratio was multiplied by a Gaussian task function (W) that 

accounted for the size of the feature-of-interest, and the task function was normalized such that 

the total signal power corresponded to the area under the feature profile [Ikejimba 2014]. Finally, 

this metric was scaled by the feature’s contrast to obtain d’ [Eq. (3.8)]. 

𝑑" = 	 %∫ [()*+,-./+0(2)]
5

[0+/*)(2)]
∗𝑊(𝑓)9 ∗ [𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡]9𝑑𝑓A

B/9
     (3.8)  

Figure 3.14 displays representative examples of the resolution, noise, and task functions 

used to calculate d’ in sDBT-generated synthetic mammograms.  

 

Figure 3. 14. Representative plots of the resolution, noise, and task functions used to calculate a 
detectability index (d’) for use with the stationary digital breast tomosynthesis (sDBT) system. 
Resolution (A) was measured as the modulation transfer function (MTF) in synthetic images of a 
metal edge, while noise (B) was measured as the averaged noise periodogram in featureless 
breast-mimicking phantoms. The example task function (C) was modeled using a Gaussian-
shaped 5-mm mass. Note the relationship of increasing noise with higher-order weighting (N 
values) during forward projection (B), ranging between an average (Avg) and maximum-
intensity projection (MIP), when measured in a 5-cm thick phantom.   
                
3.6.1c Measuring microcalcification size 
 
 When assessing the visibility of microcalcifications, which provide key diagnostic 

information in mammography, objective measures of calcification size in both the planar (x-y) 

and depth (z) dimensions can be helpful and were used in the study imaging lumpectomy 
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specimens with standard 2D mammography, conventional DBT, and sDBT [Puett 2019a]. 

Microcalcification size was measured as a planar area in the in-focus image slice reconstructed 

from both the full resolution and binned sDBT projection images and the moving-source DBT 

projection images. The microcalcification sizes were reported in relation to the size of the same 

microcalcification measured in the magnified mammography image. An artifact spread function 

(ASF) was used to determine the depth thickness of the microcalcification as displayed through 

the reconstructed image stacks of sDBT and conventional DBT.  

 Area measurements were based on pixel intensities. First, an ROI was drawn manually 

around each microcalcification to include the adjacent BKG region but avoid other highly 

attenuating features. Segmentation of each microcalcification was accomplished by fitting 

Gaussian functions through the brightest pixel in both the x and y directions. The 50% intensity 

values of each Gaussian fit were then averaged to yield the threshold for segmentation. 

Segmenting all pixel values greater than this threshold provided a mask, from which the largest 

connected component was identified as the microcalcification. As such, the segmented region 

reflects the full-width at half-maximum (FWHM) of each microcalcification. The area was then 

calculated by multiplying the number of pixels in the segmented region by the area of each pixel. 

Since each image represents a 1.8x magnification, the pixel dimensions were divided by 1.8 

when calculating the actual microcalcification size. 

 The ASF quantifies the contrast of an attenuating feature in the reconstructed image 

slices above and below the in-focus plane [Wu 2004]. It was calculated for each reconstructed 

image slice as the difference between the average intensity in the same ROI that defined the 

microcalcification and the average intensity of the surrounding BKG. Plotting the ASF as a 

function of distance from the in-focus plane quantifies the changing intensity with depth. Each 
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ASF was normalized by its maximum value (from the in-focus plane). In this study, FWHM of 

the ASF was used as a quantitative measure to compare display through depth in the sDBT and 

moving-source DBT image stacks. 

3.6.2 Assessing reader performance and preference 
 
 Although quantitative measures of image quality based on pixel intensity values within 

the image itself (see 3.6.1 Measuring image quality and quantifying feature detectability) are 

useful, quality at the clinical level is best determined by the diagnostic utility of the information 

displayed in the image. In other words, is the information displayed in a way that a trained reader 

is likely to make an accurate diagnosis? Assessing the clinical utility of an image therefore 

requires the participation of trained readers. Typically, studies of this nature ask several readers 

to complete questionnaires as they interpret images, often recording their preferences when 

interpreting specific features and confidence in reaching a correct interpretation, as they view 

images generated by different modalities. If structured appropriately, the answers to these 

questions, along with some knowledge of ground truth such as pathology, can also be used to 

measure reader performance (diagnostic accuracy). These multi-reader multi-case studies are 

now accepted as standard tools for evaluating the clinical value of imaging technologies and 

were utilized during this dissertation work, usually comparing sDBT images to standard 2D 

mammograms and/or conventional 3D mammograms for reference [Lee 2019, Puett 2019a]. The 

data collected in these studies are subjective and are therefore influenced by many factors, such 

as reader training, experience, and fatigue [Lee 2019, Gilbert 2015]. As such, care must be taken 

to select appropriate readers and provide a study protocol that is understandable and user-

friendly. A variety of reader studies have been performed to assess CNT-enabled stationary 

tomosynthesis when applied to a host of different imaging tasks, including chest, dental, and 
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orthopedic imaging. These readers typically have minimal experience with tomosynthesis 

imaging, since these applications are predominantly in pre-clinical testing. However, much more 

extensive clinical experience is available with breast imaging given the widespread use of DBT, 

allowing for the design of detailed reader studies assessing not only reader preference but also 

comparisons of reader performance. As a result, the clinical utility of images generated by sDBT 

could be compared to standard mammographic techniques. A detailed reader study was 

conducted to assess the clinical potential of sDBT [Lee 2019]. During this study, readers 

compared the reconstructed 3D image stack of sDBT to standard 2D mammograms of patients 

with concerning breast lesions detected by standard screening mammography (see 3.4.3 Patient 

selection for human study). 

 Four fellowship-trained breast imaging radiologists participated in the multi-reader multi-

case, paired-image study comparing the sDBT-generated 3D image stack to the standard 

mammogram [Lee 2019]. The readers averaged 15.3 +/- 6.8 years (10 to 25) of experience with 

mammography and 3.8 +/- 2.5 years (0 to 5) of experience with DBT. Only one reader had zero 

years of experience with DBT. Each reader was first presented with either the mammogram or 

sDBT image stack for a particular patient. Readers answered a questionnaire, rating the 

likelihood of malignancy (0 to 100% in increments of 10%), the density of breast tissue 

(BIRADS A-D classification) [Sickles 2013], and confidence in their overall impression (1 to 10 

scale). Images of the same patient by the other modality were then immediately presented, and 

readers used a 7-point scale (-3 to +3) to rate a preference compared to the initially-presented 

modality when assessing diagnostically-important image features using accepted descriptors of 

mass margin and shape, architectural distortion, asymmetry, and microcalcification 

morphology/distribution [Sickles 2013]. The order of cases and the modality presented first were 
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random. After a wash-out period of at least four weeks, the image pairs were presented to the 

same readers. The patient order was again randomized, but the modality viewed first was 

reversed. The questionnaire was again completed. This study design reduced the bias associated 

with viewing a particular imaging modality first, since the reader determined the likelihood of 

malignancy for each modality before interpreting images from the other modality. Readers were 

not provided with any clinical information and were unaware of the pathology results. 

 Reader performance was quantified as the area under the receiver operating characteristic 

(ROC) curve (AUC). In this study, ROC curves for sDBT and mammography were generated for 

each reader using the reader’s reported likelihood of malignancy during image interpretation. 

The likelihood of malignancy cutoffs (0 to 100%, in 10% increments) provided thresholds 

around which sensitivity and specificity were calculated based on the actual presence of 

malignancy, as determined by pathology. Given the relatively small number of cases, Tukey’s 

pseudovalue estimation with jackknife resampling was used to correct for bias at each threshold 

(R 3.4.0, R Foundation for Statistical Computing, Vienna, Austria and RStudio 1.1.456, RStudio, 

Inc., Boston, MA USA). Plotting the true positive rate (sensitivity) as a function of the false 

positive rate (1-specificity) for each threshold defined a relationship through which the ROC 

curve was fit using logistic regression analysis (MATLAB R2018a, The MathWorks, Inc., 

Natick, MA USA).  

 Inter-reader agreement was quantified using the Fleiss kappa (k) statistic for 

mammography and sDBT. This calculation involves selecting a threshold for the readers’ 

reported likelihood of malignancy in order to categorize each interpretation as malignant or 

benign. Agreement was calculated at thresholds of 0.5 and 0.8. Likelihood of malignancy values 

greater than the threshold were considered to be a malignant finding, while values less than or 
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equal to the threshold were considered benign. k values were interpreted using the guidelines 

described by Landis and Koch [Landis 1977]. Intra-reader agreement could not be assessed, as 

readers rated a likelihood of malignancy for each case using each modality only once. 

 In order to compare the aggregate reader performance with respect to each modality and 

assess the influence of specific breast characteristics, such as tissue density and compressed 

thickness, on performance, a multivariate analysis was performed by fitting a linear mixed-effect 

model (SAS 9.4, SAS Institute, Inc., Cary, NC USA). The fixed-effects were the difference 

between the two modalities and breast characteristic of interest, and random-effects were used to 

account for within-patient and within-reader correlations. An F-test compared the mean AUCs 

between mammography and sDBT.  

 A similar multivariate analysis was used to assess reader preference when interpreting 

diagnostically-important image features: mass margin and shape, architectural distortion, 

asymmetry, and microcalcification morphology/distribution. In this type of analysis, scores 

significantly greater than zero indicate a preference for sDBT while scores significantly less than 

zero indicate a preference for mammography. Means are reported with their confidence interval 

(CI), with p-values less than 0.05 defining statistical significance. Average reader confidence in 

overall interpretation using mammography and sDBT was compared by Student’s t-test with p-

values less than 0.05 defining statistical significance. 

3.7 Trustworthiness of the study designs and findings 
 
 In large part, the work presented in this dissertation involved assessing the value of the 

information available in images produced by sDBT, often using standard 2D mammography and 

conventional 3D mammography as references for comparison. The study designs were modelled 

on accepted protocols established in the literature to answer the questions being asked, using the 
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most rigorous methods to assess image quality, such as detectability indices and reader studies. 

Assessing the visibility of soft tissue features and microcalcifications yielded consistent findings 

across the spectrum of testing with breast-mimicking phantoms, lumpectomy specimens, and 

human subjects throughout this dissertation work. Additionally, the findings of these studies 

were compared to the large body of literature assessing DBT performance for each task. 

Consistency in these findings support the reliability of the results and the appropriateness of 

using them to guide future research and development. Admittedly, the analysis of reader 

preference and performance is complicated, requiring the use and implementation of advanced 

statistical testing. To ensure the validity of the findings, guidance was obtained by medical 

biostatisticians who selected and performed the evaluation after face-to-face discussions 

regarding the study protocol and data collection techniques.  

3.8 Limitations of the study designs 
 
3.8.1 Limitations imposed by technological differences in imaging systems 
 
 Assessing the clinical potential of sDBT involved comparing its performance to standard 

2D and conventional 3D mammography. However, sDBT is a novel technology, and there are a 

host of significant technical differences between sDBT and the imaging systems to which it was 

compared (see 2.2.4 The clinical value and technical limitations of conventional 3D 

mammography and 3.5.1a Differences in the breast imaging systems). Many of these differences 

directly impact the quality of the images generated by the system, with image quality often being 

the primary measure for comparison. The devices utilized in this work differed in terms of their 

geometric configuration, focal spot size, anode material, beam filtration, and selected technique 

(exposure and kVp) for a given breast thickness (Table 3.1). As a result, there were differences 

in the dose and beam quality between the FFDM, conventional DBT, and sDBT systems during 
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image acquisition. Additionally, the FFDM systems employed scatter-rejection grids, and 

detectors from different manufacturers used different pixel sizes and detection methods. All of 

these differences have an effect on the overall performance of the system and thus the quality of 

the images it produces (see 3.5.1a Differences in the breast imaging systems).   

3.8.2 Limitations inherent to phantom-based experimentation 
 
 Much of the work in this dissertation involved phantom-based experimentation. There are 

two key limitations inherent to this experimental approach. First, the operation of the standard 

2D and 3D mammography systems to which the sDBT system was compared have been 

optimized for patient, not phantom, imaging. As such, it was unclear if the proprietary techniques 

for selecting the operational settings during image acquisition or the proprietary image 

processing algorithms utilized after image acquisition were generating images of the highest 

possible quality for that device. In contrast, the operational settings and post-acquisition 

processing approaches for sDBT could be adjusted throughout experimentation to maximize 

image quality. Second, measurements of quality and feature detectability in the images of breast-

mimicking phantoms do not correlate directly with clinical value.       

3.8.3 Limitations with image processing 
 
 Choices made in the image processing algorithms that produce the computer-generated 

images displayed to readers affect the visibility of features in the sDBT images. For example, the 

slices in the sDBT-generated 3D image stack were reconstructed at a thin increment of 0.5 mm 

to ensure that small features, such as microcalcifications, were displayed sharply. However, 

presenting a larger stack of thinner slices may contribute to reader fatigue, as there are more 

images to review. In this study, the sDBT image stacks ranged from 44 to 150 slices, compared 

to the single mammogram. Also, the tomographic nature of the displayed DBT image stack can 
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make the assessment of microcalcification clustering more difficult, since individual 

microcalcifications belonging to a cluster may be separated through multiple slices. Appreciating 

the spatial association of microcalcifications may therefore be more problematic as the slice 

thickness decreases. Recognizing the problems inherent with the display of the reconstructed 3D 

sDBT image stack provided the motivation for incorporation of a synthetic mammography 

capability into sDBT through the development of forward projection algorithms customized to 

this new imaging technology. 

 However, there are a host of concerns with increased manipulation of the information in 

images displayed for interpretation. Some of these concerns are inherent to image processing in 

general, and others are more specific to the image processing approaches applied to sDBT in this 

dissertation work. First, image processing can potentially de-emphasize a feature-of-concern, 

increasing the chance that it will be missed when the image is interpreted, or even introduce 

potentially-worrisome patterns that were not originally present in the image, which may increase 

the chance of a false-positive diagnosis. For example, concern has been raised over introducing 

pseudo-calcifications through feature-enhancement algorithms into the synthetic mammogram 

[Ratanaprasatporn 2017]. Second, the processing developed for this study focused on improving 

the visibility of masses and microcalcifications. However, architectural distortion and 

asymmetries are also important soft tissue findings in mammographic imaging. Finally, although 

the findings from phantom-based experimentation suggest value to presenting a set of synthetic 

mammograms, with each image dedicated to the display of a specific pathology, the true clinical 

benefit of offering multiple images for interpretation will need to be confirmed, in order to 

justify the increased processing and storage expense as well as reader time required to work with 

additional images. 
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3.8.4 Limitations imposed by reader experience 
 
 As with any new imaging technology being applied at the clinical level, the effect of 

training and experience on reader performance needs to be considered. Much of the work 

reported in this dissertation included reader participation, and the experience of the readers with 

DBT varied significantly, from no experience to 5 years. As noted in previous studies published 

in the literature, experience can have a significant impact on the experimental findings assessing 

reader preference and performance when interpreting images generated by a new technology 

[Wallis 2012]. This experience effect was evident in the reader study comparing sDBT to 

standard 2D mammography, in which the performance of the reader with no DBT experience 

differed the most from the other readers [Lee 2019] (see 4.3.2a Reader accuracy). 

3.8.5 Addressing limitations and implications for future research  
 
 Appreciating these limitations in study design led to attempts to minimize their impact on 

the findings. For example, a host of adjustments were made in recognition of the technological 

differences in the imaging systems. As much as possible, attempts were made to ensure 

equivalent radiation dose delivery during image acquisition through adjustments in exposure. 

When possible, post-acquisition adjustments in the image information were made to account for 

device differences, including mathematical corrections for differences in magnification factors, 

detector pixel sizes, and post-processing [Puett 2019a, Puett 2020a]. 

 The limitations inherent with phantom-based experimentation in general and the concerns 

raised by the image processing approaches chosen specifically for this work emphasize the 

critical importance of ongoing reader studies to assess the true clinical value of the sDBT system 

as clinical experience grows.  Particular attention needs to be directed at the feature-

identification algorithms. For all image processing approaches designed to produce feature-



www.manaraa.com

 

  87 

enhanced synthetic images, the accuracy of the feature-detection step is key. The feature-

detection approach evolved through the course of this dissertation work, with an MSER-based 

approach being utilized in the image processing chain for clinical testing (see 3.5.3e Forward 

projecting the 3D image space into synthetic 2D images). Recent experience with conventional 

DBT has suggested that deep learning algorithms have the potential to improve the accuracy of 

feature identification [James 2018], although this approach requires algorithm training on a 

library of images offering a broad range of pathology. The image processing chain being 

developed for sDBT should accommodate a deep learning feature-detection algorithm, once 

experience with this technology is adequate to support the required training. This experience will 

involve continued patient imaging, although the option of developing a virtual model of the 

sDBT system and a library of virtual sDBT images should also be considered. Virtual testing is 

currently being explored for other breast imaging systems [Badano 2018]. 

3.9 Summary for Chapter 3: Methodology 
 
 This chapter provided the details of the study designs that generated the findings 

presented in this dissertation. First, the studies were placed in context, pointing out that 3D breast 

imaging is a very active research arena, driving rapid advances in technology and image 

processing techniques. The setting in which the research for this dissertation took place was then 

described, since a project of this scope, bridging basic experimentation with clinical application, 

would not have been feasible without a highly-collaborative environment of scientists and 

clinicians dedicated to advancing biomedical imaging. Second, the specifics of the materials and 

methods used during this dissertation work were provided. Emphasis was placed on the broad 

range of study designs, which included highly-controlled benchtop experimentation and human 

study. Finally, issues of the trustworthiness of the findings and limitations in the study designs 
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were discussed, including the impact that these limitations had on the interpretation of the data as 

well as their implications for future work with this new imaging technology.  
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CHAPTER 4: FINDINGS

 
4.1 Introduction to Chapter 4: Findings 
 
 Chapter 4: Findings organizes the results of this work in terms of its three broad Aims: 

(1) understand the unique challenges of scatter and artifact with stationary digital breast 

tomosynthesis (sDBT), (2) assess the performance of sDBT relative to currently-available 2D 

and 3D mammography technologies, and (3) incorporate a synthetic mammography capability 

into sDBT (see 1.2 Purpose of this work and 1.3 Research questions asked in this work). The 

findings presented in this chapter have been published in peer-reviewed journals, as summarized 

in the figures and text presented herein.  

4.2 The challenges of scatter and artifact with stationary tomosynthesis 
 
4.2.1 Quantifying scatter in contrasted and non-contrasted sDBT images 
 
 Studies were done to assess scatter in both contrasted and non-contrasted sDBT 

projection images. In these studies, scatter was measured indirectly using a beam-pass primary 

sampling device (PSD) to isolate the primary component of the total signal (see 3.5.2 Measuring 

scatter) [Puett 2018b]. Simple subtraction of the primary signal from the total signal, measured 

without the PSD in place, allowed calculation of the scatter signal. Scatter is perhaps best 

quantified as its relative contribution to the total signal, most commonly presented as the scatter-

to-primary ratio (SPR). Similar to findings with conventional 2D [Chen 2015] and 3D 

mammography [Feng 2014], scatter increased in the sDBT projection images when moving from 

the periphery of the breast to central breast regions, with SPR climbing from about 0.2 to greater 

than 0.6 in some cases. Figure 4.1 provides a representative example of the changing SPR 
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contour when a customized 5 cm CIRS model 020 BR3D breast phantom (see 3.4.1 Breast-

mimicking phantoms) is imaged by sDBT.  

 
 

Figure 4. 1. Scatter-to-primary ratio (SPR) values in a representative projection image collected 
by stationary digital breast tomosynthesis (sDBT). In this example, the target was a 5-cm thick 
breast-mimicking phantom that had been customized with wells containing iodine to simulate 
contrast-enhanced imaging. Note the higher SPR values in central breast regions compared to 
peripheral regions and the highest SPR values in the iodine-containing well regions of the image. 
Figure adapted from [Puett 2018b].         
  

Several factors were found to affect scatter during sDBT in both contrasted and non-

contrasted breast regions (Figure 4.2). First, SPR was higher in regions containing iodinated 

contrast compared to adjacent background (BKG) regions, although SPR values were similar 

across the range of iodine concentrations (1-15 mg/ml), which reflected concentrations that can 

be achieved during human imaging. Second, SPR tended to be higher in images collected at a 

higher photon energy. Finally, scatter was most strongly correlated with compressed breast 

thickness.   
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Figure 4. 2. The scatter-to-primary ratio (SPR) as a function of iodine concentration and breast 
thickness in projection images collected by stationary digital breast tomosynthesis (sDBT) 
directed at breast-mimicking phantoms that had been customized with wells containing iodine to 
simulate contrast-enhanced imaging. Imaging was done at both high (49 kVp) and low (30 kVp) 
photon energies during the temporal and dual-energy subtraction protocols. SPR was dependent 
on phantom thickness (p < 0.05 by ANOVA) in both non-contrasted (background) and contrasted 
(iodine-containing) regions. Also, SPR tended to be higher when images were collected at higher 
photon energy. Figure adapted from [Puett 2018b].       
  

Scatter poses a unique challenge with tomosynthesis. Since oblique projection views 

must be collected, the use of standard scatter-reduction techniques during image acquisition, 

such as scatter-grids and air-gaps, is problematic (see 2.5 Image quality problems inherent to 

tomosynthesis in general and sDBT in particular). Therefore, correcting for scatter through 

image processing is important. Experiments for this dissertation compared different scatter 

correction algorithms, utilizing scatter maps based on sampled scatter values (ScatterMapdirect), 

calculated SPR values (ScatterMapSPR), or a filtered (f) combination of both (ScatterMapfSPR) 

(see 3.5.3b Creating scatter maps). The maps differed in their representations of scatter (Figure 

4.3). Only maps including an SPR calculation [Figure 4.3(b) and 4.3(c)] captured the noise 
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component of the scatter signal. Therefore, unlike ScatterMapSPR and ScatterMapfSPR, 

ScatterMapdirect was smooth [Figure 4.3(a)]. Additionally, given the relatively sparse sampling 

by the PSD and the chance that an iodine-containing well was not adequately sampled, 

ScatterMapSPR tended to assign lower scatter values to regions of high attenuation [Figure 

4.3(b)] compared with ScatterMapfSPR, potentially underestimating scatter in areas of the image 

where there was a rapid change in the primary signal. The fSPR algorithm was designed to 

generate a scatter map that blended the most useful qualities of both ScatterMapdirect and 

ScatterMapSPR [Wu 2017, Puett 2017]. 

 
Figure 4. 3. Scatter maps generated from the projection images collected by stationary digital 
breast tomosynthesis (sDBT) directed at breast-mimicking phantoms that had been customized 
with wells containing iodine to simulate contrast-enhanced imaging. These representative scatter 
maps were generated using either (a) direct scatter values (ScatterMapdirect), (b) a scatter-to-
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primary ratio (SPR) calculation (ScatterMapSPR), or (c) a filtered (f) combination of both 
(ScatterMapf SPR ) from images of a 5-cm thick phantom with wells containing iodine at a 
concentration of 15 mg⁄ml collected at 49 kVp. The expanded views highlight differences in the 
region of the 1.5-cm diameter well. Note the noise component present in the scatter maps 
containing an SPR component, compared with the smooth direct scatter map. Also, note the 
lower scatter values assigned to the well region by the SPR map relative to the other maps. 
Figure adapted from [Puett 2018b].         
  

Figure 4.4 displays the effect of applying the different scatter maps on the projection 

image. It superimposes two curves, which are line profiles through the contrast-containing well 

regions of the image. The colored profiles display the changing signal through the center of 

iodine-containing wells in representative projection images adjusted by the different scatter-

correction techniques. The black profiles reflect the same path through the applied scatter map. 

The application of each map corrected the cupping artifact, which refers to the signal difference 

in central breast regions compared with the periphery. Additionally, the application of maps 

developed using an SPR calculation [Figure 4.4(c) and (d)] generated a smoother projection 

image compared with the application of ScatterMapdirect [Figure 4.4(b)]. 

 
Figure 4. 4. The effect of applying different scatter-correction algorithms on the pixel intensity 
values in projection images collected by stationary digital breast tomosynthesis (sDBT) directed 
at breast-mimicking phantoms that had been customized with wells containing iodine to simulate 
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contrast-enhanced imaging. The profiles correspond to the path identified by the blue line in 
Figure 3.5. The blue, green, and gold profiles demonstrate the result of applying the different 
scatter maps (black profiles), including (b) direct scatter correction, (c) correction utilizing the 
scatter-to-primary ratio (SPR), and (d) the application of a filtered SPR (fSPR) map. which can 
be compared to the red profile (a) without scatter correction.  This analysis was done on a 
projection image collected at 49 kVp of a 5-cm thick breast-mimicking phantom with wells 
containing iodine at a concentration of 15 mg⁄ml. Note the inverted “cup-shape” of the 
noncorrected projection profile (red) and scatter profiles (black). Since correction utilizing SPR 
(c and d) captured the noise component of the scatter signal, their application yielded a smoother 
scatter-corrected image. Figure adapted from [Puett 2018b].     
  
4.2.2 The effect of scatter and noise correction through processing on sDBT image quality   
 
 Experimentation for this dissertation investigated the effects of different scatter 

correction approaches on image quality. The different approaches handled noise processing 

differently, and as a result, their application produced images with different contrast, noise, and 

resolution. The direct scatter correction approach maintained good contrast but did not account 

for the noise component of the scatter. Scatter correction based on SPR did account for noise but 

compromised contrast. fSPR can be considered a blend of the direct and SPR scatter approaches 

and was designed to maximize the beneficial attributes of each [Wu 2017]. Indeed, in this study, 

scatter correction using fSPR yielded the highest observed values for the contrast-to-noise ratio 

(CNR) of the iodinated feature (Figure 4.5), when imaged using both temporal subtraction (TS) 

and dual energy subtraction (DES) protocols, which are the standard image collection protocols 

for contrasted breast imaging (see 3.5.1c Configuring the sDBT system for contrast-enhanced 

imaging).  
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Figure 4. 5. The effect of applying different scatter correction algorithms on contrast and noise in 
stationary digital breast tomosynthesis (sDBT) images of breast-mimicking phantoms that had 
been customized with wells containing iodine to simulate contrast-enhanced imaging. Contrast 
and the contrast-to-noise ratio (CNR) were measured as a function of iodine concentration in 
slices from the reconstructed 3D image stack, which was generated from projection views 
collected using both temporal subtraction (TS) and dual energy subtraction (DES) protocols.  
Prior to reconstruction, different scatter correction algorithms were applied to the projection 
views, including a direct scatter correction (blue), correction utilizing the scatter-to-primary ratio 
(SPR) (green), or the application of a filtered SPR (fSPR) map (gold), resulting in images which 
could be compared to those produced with no scatter correction (black). Note that scatter 
correction by any method improved contrast. However, for both TS and DES, only the filtered 
scatter-to-primary (fSPR) correction approach produced a statistically significant increase in 
CNR (p < 0.05 by t-test) compared with no scatter correction for all iodine concentrations. 
Figure adapted from [Puett 2018b].         
  

This increase in CNR using the fSPR approach also yielded images with the highest 

feature detectability (Figure 4.6), quantified using an index incorporating a task-based measure 

of image quality (3.6.1b Calculating detectability indices). 
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Figure 4. 6. The effect of applying different scatter correction algorithms on the detectability of 
contrasted sites in stationary digital breast tomosynthesis (sDBT) images of breast-mimicking 
phantoms that had been customized with wells containing iodine to simulate contrast-enhanced 
imaging. The detectability index (d’) was measured as a function of iodine concentration in 
slices from the reconstructed 3D image stack, which was generated from projection views 
collected using both temporal subtraction (TS) and dual energy subtraction (DES) protocols.  
Prior to reconstruction, different scatter correction algorithms were applied to the projection 
views, including a direct scatter correction (blue), correction utilizing the scatter-to-primary ratio 
(SPR) (green), or the application of a filtered SPR (fSPR) map (gold), resulting in images which 
could be compared to those produced with no scatter correction (black). There was no loss in 
feature detectability with the application of any scatter correction approach. However, applying 
correction utilizing fSPR yielded images with the highest d’. Figure adapted from [Puett 2018b]. 
  
4.2.3 Artifact reduction in reconstructed and synthetic sDBT images 
 
 The metal needles and wires used to localize breast lesions for biopsy can generate 

significant shadowing and rippling, which has been described as the “slinky” artifact, through the 

reconstructed image stack (Figure 2.8 and 4.7). However, the application of metal artifact 

reduction (MAR) (see 3.5.3c Reducing artifact) removed much of this artifact (Figure 4.7). 
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Figure 4. 7. Example images demonstrating the effect of incorporating a metal artifact reduction 
(MAR) algorithm on the appearance of a reconstructed image slice generated by stationary 
digital breast tomosynthesis (sDBT). The application of MAR (right) removed the “slinky” 
clutter of metal artifact that is otherwise present in the reconstructed image slice (left). Figure 
adapted from [Puett 2019a]. 

 As has been reported in synthetic mammograms generated by conventional DBT [Geiser 

2018], “slinky” artifacts were also present around dense calcifications and metal objects in 

synthetic images generated by sDBT (Figure 4.8). However, a two-step correction approach (see 

3.5.3c Reducing artifact) involving segmentation at the projection image level followed by 

replacement of dense features back into the synthetic mammogram with histogram matching 

reduced these artifacts (Figure 4.8).  
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Figure 4. 8. Example images demonstrating the amplification of dense feature artifact in 
synthetic mammograms generated by stationary digital breast tomosynthesis (sDBT) as well as 
the value of artifact reduction through processing. The dense-feature artifacts surrounding a large 
calcification (A) and a metallic biopsy marker (B) include shadowing in the image slices of the 
reconstructed 3D image stack and rippling in the synthetic mammogram. However, a multi-step 
artifact reduction algorithm can minimize the artifact-related distortion in the final reconstructed 
and synthetic images displayed to the reader. Figure adapted from [Puett 2019b]. 
 
4.3 The performance of sDBT relative to standard 2D and conventional 3D 
 mammography 
 
4.3.1 Visualizing microcalcifications in lumpectomy specimens 
 
 Microcalcification visibility was often assessed in this dissertation work for several 

reasons. First, microcalcification morphology and distribution provide important diagnostic clues 

in mammography, with smaller (<0.5 mm diameter), irregularly-shaped, and numerous, tightly-

clustered calcifications being of most concern for malignancy [Henrot 2014]. Second, debate 

continues regarding the adequacy of microcalcification display by 3D mammography [Spangler 

2011, Tagliafico 2014, Kopans 2011], leading to the common practice of combining 2D and 3D 

mammography. Third, microcalcification visibility reflects the resolution of a system, and thus, 

provides a clinically-applicable measure of performance by which the novel approach of sDBT 

can be compared to standard 2D mammography and conventional DBT. Lumpectomy specimens 
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provide attractive targets when measuring the performance of breast imaging systems, as 

pathology is always available for ground truth knowledge. This work included a comparison of 

microcalcification visibility in images generated by standard 2D mammography, conventional 

3D mammography, and sDBT (see 3.6.1c Measuring microcalcification size) (Figure 4.9) [Puett 

2019a]. Although characterizing individual microcalcifications is of value, as noted above, 

appreciating their association in clusters also provides important diagnostic clues. Since 

individual microcalcifications can be separated in different slices through the reconstructed 

image stack, clustering may be more difficult to detect when interpreting the 3D image stack 

produced by a DBT study compared to the standard mammogram [Spangler 2011].  As such, it is 

now common in clinical practice to present radiologists interpreting DBT scans with synthetic 

slab images (see 2.6 The image processing chain that generates sDBT images and the value of 

the synthetic mammogram). Slab images are generated by integrating the information from 

multiple slices in the reconstructed image stack into a single image (see 3.5.3e Forward 

projecting the 3D image space into synthetic mammograms), typically 1 cm in thickness. As 

such, when evaluating the appearance of microcalcification clusters in this study, readers were 

presented with standard 1 cm-thick slabs for viewing (Figure 4.9). 
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Figure 4. 9. The display of microcalcifications in images of lumpectomy specimens collected by 
magnified mammography, conventional digital breast tomosynthesis, and stationary digital 
breast tomosynthesis (sDBT). Note that the microcalcifications (MC 1-3) appear less blurred in 
the magnified mammography images compared to both the reconstructed image slices and 
synthetic slab mages generated by conventional moving-source DBT and sDBT, reflecting the 
higher spatial resolution of magnified mammography compared to the two DBT systems. 
However, the calcifications are better displayed by sDBT than conventional DBT. Finally, note 
the differences in the backgrounds surrounding each microcalcification. Fewer out-of-plane 
features are present in the reconstructed image slices from sDBT compared to moving-source 
DBT, reflecting a better depth resolution as a result of the wider angular span available with the 
sDBT system. Mammography has no depth resolution, and thus the background includes the 
supporting grid. Each image represents a cropped 5x5 mm area at 1.8x magnification. Figure 
adapted from [Puett 2019a]. 
 
 The planar size of individual microcalcifications was similar in images generated by 

conventional DBT and sDBT when the sDBT projections were “binned” by post-processing, 

with the binned-detector mode being the default setting for the conventional DBT system used in 

these experiments (Figure 4.10A). However, the unique design of the sDBT system allowed for 

the collection of a wider-angle span of projection views and the operation of the detector in full-

resolution mode without significantly prolonging the scan time. In this configuration, the planar 

sizes of individual microcalcifications displayed by sDBT were more similar to magnified 
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mammography than conventional DBT, a trend which was even more pronounced with 

decreasing microcalcification size (Figure 4.10B). This trend reflects the different spatial 

resolutions of each system (see 3.5.1a Differences in the breast-imaging systems). As the 

microcalcification size approaches the resolution the system, it appears blurred in the image. 

This blurring is a progressive change of increasing relative area but decreasing contrast, as 

microcalcifications of smaller and smaller size are displayed. Eventually, the contrast becomes 

too low to distinguish the microcalcification from its background, and therefore, it cannot be 

detected. With this in mind, Figure 4.10 demonstrated that sDBT, when operated in a full-

resolution detector mode, displayed the smallest visible microcalcifications with less blur 

compared to conventional DBT, using magnified mammography as a reference.   

 

Figure 4. 10. Comparison of the size of individual microcalcifications as displayed in the in-
focus reconstructed image slice generated by stationary digital breast tomosynthesis (sDBT) and 
conventional DBT. Size refers to the planar (x-y) area of the microcalcification (MC) as seen in a 
single image, referenced as a percentage to the size of the same microcalcification displayed by 
magnified mammography. As microcalcification size decreases and begins pushing the 
resolution of the system, the feature is blurred. Progressive blurring produces microcalcifications 
that appear larger but have a lower contrast. The planar sizes of individual microcalcifications 
were similar in images generated by moving-source DBT (orange circles) and sDBT (blue 
diamonds) when the sDBT projections were binned by post-processing, with the binned-detector 
mode being the default setting for the moving-source DBT system used in these experiments (A). 
However, when the sDBT system was operated in its optimum configuration, including the full-
resolution detector mode, the size of every microcalcification was closer to that of magnified 
mammography than moving-source DBT (B), suggesting that the feature was displayed with less 
blur. Figure adapted from [Puett 2019a]. 
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 The artifact spread function (ASF) provides a quantitative measure of depth resolution 

(see 3.6.1c Measuring microcalcification size), and as expected, given the wider angular span of 

the distributed sDBT source array, for every microcalcification analyzed, sDBT yielded a 

narrower ASF in the reconstructed image stack compared to conventional DBT (Figure 4.11). 

This difference was statistically-significant (p<0.001) when compared at the mean full-width at 

half-maximum (FWHM) of the ASF for sDBT (2.1 mm) and conventional DBT (4.4 mm). 

 

 

Figure 4. 11. Comparison of the depth resolution of stationary digital breast tomosynthesis 
(sDBT) and conventional DBT as reflected by the artifact spread function of individual 
microcalcifications in the reconstructed image stacks of lumpectomy specimens. The artifact 
spread function (ASF) provides a measure of size in the depth (z) direction and thus a reflection 
of depth resolution. The mean ASF (solid line) is narrower with sDBT (blue) compared to 
conventional DBT (blue). This difference is statistically-significant (p<0.001) when compared as 
the full-width at half-maximum (FWHM) (dashed lines). The shaded regions represent standard 
deviation about the mean. Figure adapted from [Puett 2019a]. 
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The improved ASF provided by sDBT can also be appreciated in the reconstructed image 

slices shown in Figure 4.9, as more background structures are present in the reconstructed image 

slice from conventional DBT compared to sDBT, as a result of its smaller angular span.  

In addition to comparing the display of individual microcalcifications in sDBT and 

conventional DBT, this study also compared the conspicuity of microcalcification clustering, 

again using magnified mammography as a reference (Figure 4.12).  

 

Figure 4. 12. Example images of two microcalcification clusters in lumpectomy specimens as 
displayed by magnified mammography, conventional digital breast tomosynthesis, and stationary 
digital breast tomosynthesis (sDBT). Both an in-focus reconstructed image slice and synthetic 
slab image are shown for the two DBT systems. The synthetic slab images were generated as a 
maximum intensity projection through 1 cm of the reconstructed image stack. Note that the 
microcalcifications (MC) appear less blurred in the magnified mammography images, reflecting 
the higher spatial resolution of this system compared to the two DBT systems. However, MC 
Cluster 1 and 2 are more clearly displayed in the images generated by sDBT compared to the 
conventional moving-source DBT system. Each image represents a cropped 21x17 mm area at 
1.8x magnification. Figure adapted from [Puett 2019a]. 
 
 However, unlike the individual microcalcification comparison, which was based on 

objective measures of microcalcification size, reader preference was used to assess the display of 

the microcalcification cluster (see 3.6.2 Assessing reader performance and preference). As noted 
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previously, synthetic slab images may display the spatial association of microcalcification 

clusters better than the reconstructed image stack (see 2.6 The image processing chain that 

generates sDBT images and the value of the synthetic mammogram and 3.5.3e Forward 

projecting the 3D image space into synthetic 2D mammograms), as individual 

microcalcifications can be separated in different slices through the 3D image stack. Therefore, 

for this preference study, readers were presented with synthetic slab images generated from 

information collected by sDBT and conventional DBT to compare to the magnified 

mammography image (Figure 4.12).  

Two radiologists specializing in breast imaging were asked to rate either a strong 

preference, preference, weak preference, or similar preference when assessing microcalcification 

morphology, distribution/clustering, and size using a 7-point scale (-3 to +3) when viewing pairs 

of images: mammography image vs. sDBT slab, mammography image vs. conventional DBT 

slab, and sDBT slab vs. conventional DBT slab (Figure 4.13). All images were presented to the 

readers on MQSA-qualified 5-megapixel grayscale display monitors equipped with conventional 

DICOM viewing software tools. The order of individual images seen first and the order of image 

pairs was random. After viewing all of the image combinations for each case, the readers then 

ranked the three images as to their clinical usefulness, again using a 7-point scale. The responses 

provided data for statistical comparison, using a t-test to compare the paired datasets, with the 

findings reported as the mean and corresponding standard deviation. In every case, readers 

preferred the synthetic slab image generated by sDBT and the magnified mammography image 

over the conventional DBT slab image when characterizing the morphology of individual 

microcalcifications and identifying small microcalcifications. Also, the synthetic slab image 

generated by sDBT and the magnified mammography image were preferred over the 
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conventional DBT slab image when assessing microcalcification clusters in most cases (Figure 

4.13A and B). On average, readers also tended to prefer the magnified mammography image 

over the sDBT slab image. However, this preference was less consistent, with the sDBT slab 

image equal to or preferred over magnified mammography in 50% of cases (Figure 4.13C). 

 

Figure 4. 13. Reader preferences when comparing the display of microcalcifications in the 
magnified mammography images of lumpectomy specimens and synthetic slab images generated 
by conventional digital breast tomosynthesis and stationary digital breast tomosynthesis (sDBT). 
Readers were asked to rate their preference when characterizing individual microcalcifications 
(MC) morphology (black), assessing microcalcification distribution/clustering (red), and 
identifying small microcalcifications (blue) as they viewed paired images:  the synthetic slab 
image generated by sDBT vs. the synthetic slab image generated by conventional moving-source 
DBT (A), the magnified mammography image vs. the synthetic moving-source DBT slab image 
(B), and the magnified mammography image vs. the synthetic slab image generated by sDBT 
(C). The target dot represents the median preference score, the box represents the interquartile 
range, and the black circles represent outliers. * indicates a statistically-significant preference 
(p<0.05). Figure adapted from [Puett 2019a]. 
 

In terms of characterizing the overall diagnostic value or “clinical usefulness” of the 

magnified mammography image, the sDBT synthetic slab image, and the conventional DBT 

synthetic slab image, as related to microcalcification visibility, readers strongly preferred sDBT 
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and magnified mammography over conventional DBT (p<0.05), although on average, magnified 

mammography was preferred over sDBT (p<0.05). 

4.3.2 Experience with sDBT in human studies 
 
4.3.2a Reader accuracy 
 
 When assessing the performance of new imaging technologies at the clinical level, 

detailed reader studies are used to measure diagnostic accuracy, agreement, confidence, and 

preference (see 3.6.2 Assessing reader performance and preference). This dissertation work 

included a reader study comparing sDBT to standard 2D mammography in a BIRADS 4 cohort 

(see 3.4.3 Patient selection for reader study). Performance can be appreciated by analyzing 

receiver operating characteristic (ROC) curves (Figures 4.14A-C). The area under the ROC 

curve (AUC) provides a measure of diagnostic accuracy and was calculated for each reader and 

each modality using a mixed-effect model (Figure 4.14D). In this study, three of the four readers 

performed better using sDBT. Only Reader 2 performed better using mammography and 

interestingly had the most experience with mammography at 25 years. Reader 4 had the least 

experience with sDBT and demonstrated a performance that differed the most from the other 

readers when interpreting sDBT images (Figure 4.14B), as reflected by the unique ROC curve 

shape. Overall, the mean AUC for sDBT was significantly (p<0.0001) higher than the mean 

AUC for mammography (Figure 4.14C), demonstrating that on average, readers were more 

likely to identify malignancy correctly when interpreting the sDBT images compared to standard 

2D mammography. 
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Figure 4. 14. A comparison of reader performance when interpreting standard mammograms and 
the reconstructed image stack generated by stationary digital breast tomosynthesis (sDBT) from 
patients with concerning breast lesions. Performance was assessed by generating receiver 
operating characteristic (ROC) curves for each reader when interpreting mammograms (A) and 
the sDBT images (B). Sensitivity and specificity were calculated from the reported likelihood of 
malignancy at the time of interpretation and the actual presence of malignancy as determined by 
biopsy. The area under the ROC curve (AUC) provided a measure of diagnostic accuracy, and 
the mean AUC for sDBT was significantly higher than the mean AUC for mammography (C). 
AUCs were also calculated for each reader and each modality using a mixed-effect model (D). * 
represents p<0.0001. Figure adapted from [Lee 2019]. 
 

The higher diagnostic accuracy using sDBT held true for each breast density category 

(BIRADS A-D) [Sickles 2013] and breast thickness range, as reflected by statistically higher 

(p<0.05) mean AUCs for sDBT compared to mammography (Figure 4.15), with the breast 

thickness ranges selected to ensure an adequate number of samples within each interval for 

statistical analysis.  

A B

Reader Mammography	
Mean	AUC

sDBT	Mean	
AUC

1 0.6219 0.6759

2 0.7577 0.7346

3 0.7176 0.7377

4 0.6330 0.6869

Overall* 0.6826 0.7088

C D
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Figure 4. 15.  Average reader performance as a function of breast density and compressed breast 
thickness when interpreting standard mammograms and the reconstructed image stack generated 
by stationary digital breast tomosynthesis (sDBT) from patients with concerning breast lesions. 
The area under the receiver operator characteristic curve (AUC) provided a measure of 
diagnostic accuracy. Readers were more likely to make a correct diagnosis using stationary 
digital breast tomosynthesis (sDBT) compared to mammography for each breast density (A) 
category (BIRADS A-D) and breast thickness range (B), as reflected by statistically higher 
(p<0.05) mean AUCs. Figure adapted from [Lee 2019]. 
 
4.3.2b Reader agreement and confidence 
 
 Using a likelihood of malignancy threshold of 0.5, the overall agreement between readers 

for the presence of malignancy was fair (k = 0.35) with mammography and slight (k = 0.18) with 

sDBT. Increasing the likelihood of malignancy threshold to 0.8 resulted in moderate agreement 

(k = 0.59) between readers when using mammography and substantial agreement (k = 0.67) 

between readers when using sDBT.  

 On average, readers had similar confidence in their interpretation of the mammograms 

and sDBT images (Figure 4.16A). Although the readers were not given any clinical information 

and were unaware of the biopsy results, they were significantly more confident (p<0.05) in their 

final impression when interpreting images that actually contained malignant lesions compared to 

their final impression when interpreting images that were determined to be benign by biopsy 

(Figure 4.16B). This higher confidence when viewing images of malignant as opposed to benign 

lesions was similar for both mammography and sDBT.  

 

A BBIRADS	
Breast	
Density

Mammography	
Mean	AUC

sDBT	Mean	
AUC p-value

A 0.6831 0.7156 0.0030

B 0.6811 0.7106 <	0.0001

C 0.6858 0.7007 0.0120

D 0.6777 0.7126 <	0.0001

Compressed	
Breast	

Thickness	(cm)

Mammography	
Mean	AUC

sDBT	Mean	
AUC p-value

≤	3.4 0.6883 0.7145 0.001

3.5	– 4.4 0.6765 0.7064 <	0.0001

4.5	– 5.4 0.6890 0.7129 <	0.0001

≥	5.5 0.6801 0.7025 0.006
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Figure 4. 16. Reader confidence when interpreting standard mammograms and the reconstructed 
image stack generated by stationary digital breast tomosynthesis (sDBT) from patients with 
concerning breast lesions. Reader confidence in the overall impression when interpreting 
mammograms (gray) and sDBT images (black) was similar when averaged for all cases (A). 
However, readers were significantly more confident in their interpretation of images that 
contained malignant lesions compared to their interpretation of images with benign lesions, with 
pathology providing diagnostic ground-truth (p<0.05, with error bars representing the standard 
deviation of each group). This finding was similar for both mammography and sDBT (B). Figure 
adapted from [Lee 2019]. 
 
4.3.2c  Reader preference when interpreting image features 
 

Figure 4.17 summarizes reader preference when using sDBT and mammography to 

interpret diagnostically-important image features. As reflected by average preference scores 

greater than zero, readers preferred sDBT over mammography when interpreting soft-tissue 

features (Figure 4.17), including mass shape and margins, architectural distortion, and 

asymmetry (p<0.05 in all cases). However, mammography was preferred over sDBT when 

characterizing microcalcifications (p<0.05). 
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Figure 4. 17. Reader preference when interpreting diagnostically-important image features as 
displayed in the standard mammograms and the reconstructed image stack generated by 
stationary digital breast tomosynthesis (sDBT) from patients with concerning breast lesions. The 
bar graphs summarize aggregate reader preference and show that readers preferred the 
reconstructed sDBT image stack over the mammogram when interpreting soft-tissue features 
(mass margins and shape, architectural distortion, and asymmetry) but preferred mammography 
when characterizing microcalcifications (p<0.05 in all cases, with error bars representing the 
95% confidence interval of each grand mean estimate). Positive scores represent a preference for 
sDBT, and negative scores represent a preference for mammography. Figure adapted from [Lee 
2019]. 
 

Example images are helpful in demonstrating differences between the standard 

mammogram and an sDBT image (Figure 4.18). 
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Figure 4. 18. Example images comparing the standard mammogram and to an image slice from 
the reconstructed stationary digital breast tomosynthesis (sDBT) stack. Based on pathology, the 
site of concern (expanded view) was benign. Readers were more likely to characterize this lesion 
accurately and were more confident in their assessment when interpreting sDBT (B), given the 
fact that the margins of the mass were more difficult to characterize on the mammogram (A). For 
this example, readers scored an average likelihood of malignancy of 50% when interpreting the 
mammogram and 25% when interpreting the sDBT images. Figure adapted from [Lee 2019]. 
 
4.4 Incorporating synthetic mammography into sDBT 
 
4.4.1 Feature detectability in the synthetic mammogram as a function of intensity weighting 

during forward projection 
 
 Quantifying detectability (d’) (see 3.6.1b Calculating detectability indices) allowed 

correlation between the visibility of clinically-important image features in the synthetic 

mammogram and the order of the polynomial weighting function used during forward projection 

(see 3.5.3e Forward projecting the 3D image space into synthetic 2D images). The range of 
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weighted functions exists between the extremes of an average-intensity projection (zero-order) 

and maximum-intensity projection (infinite-order). As expected, larger calcifications tend to be 

more visible than smaller calcifications, regardless of weighting or the thickness of the breast 

(Figure 4.19A). However, for microcalcifications of a given size, increasing the weighting 

function, at least up to a point, improved their detectability (Figure 4.19B). 

 
 
Figure 4. 19. Relationships between microcalcification visibility in synthetic images generated 
by stationary digital breast tomosynthesis (sDBT) as a function of the polynomial order used to 
weight the forward projection. In this case, microcalcification mimics of various sizes (A) were 
present in breast phantoms ranging between 3-5 cm in thickness, and visibility was quantified by 
a detectability index (d’) (B). There was a positive correlation between the detectability of the 
microcalcification and the weighting factor order, regardless of the size of the microcalcification 
or the thickness of the breast. Figure adapted from [Puett 2019b]. 
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 The relationship between d’ and the weighting factor applied during forward projection 

was less consistent for masses, compared to microcalcifications, given the fact that masses differ 

significantly in their inherent properties. Figure 4.20 demonstrates how different the relationship 

between d’ and the weighting factor can be, when calculated for 3 masses of similar size (5 mm) 

but different density (Figure 4.20B). However, in general, masses do tend to be lower-density 

features, and as such, their detectability tended to be higher in synthetic mammograms generated 

using lower-order weighting (Figure 4.20).  

 
 
Figure 4. 20. Relationships between the visibility of masses in synthetic images generated by 
stationary digital breast tomosynthesis (sDBT) as a function of the polynomial order used to 
weight the forward projection. In these examples, the mass mimics were present in breast 
phantoms and differed in density. Visibility was quantified by a detectability index (d’). Note the 
varied relationship between mass visibility and the order of weighting (B-line graph) but also the 
fact that visibility tended to be higher when lower order weights were used (A and B-bar graph). 
Figure adapted from [Puett 2019b]. 
 
 Differences in the information displayed by low and high-ordered weighting during 

forward projection could be appreciated at the clinical level when applied to patient images. 

Figure 4.21 displays sDBT-generated low and high-order weighted synthetic mammograms next 

to the standard mammogram obtained on a patient who had been “called back” for further 
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evaluation of concerning microcalcifications noted on screening mammography. Comparing line 

profiles drawn through a single microcalcification demonstrated the signal intensity to be highest 

when the microcalcification was displayed in the synthetic mammogram generated by high-order 

weighting compared to both the synthetic mammogram generated by low-order weighting and to 

the actual mammogram. 

 
 
Figure 4. 21. A comparison of pixel intensities in the actual mammogram and synthetic 
mammograms generated from information collected by stationary digital breast tomosynthesis 
(sDBT). The synthetic mammograms were generated using a polynomial weighting function of 
order N=1 (center) and N=40 (right). Line profiles are drawn through the same 
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microcalcification for each image. The background pattern is different between the actual 
mammogram and sDBT-generated synthetic mammograms, since the two studies were done at 
different times and thus imaged different compressions. Figure adapted from [Puett 2019b]. 
 

Similarly, when assessed on eight individual microcalcifications visible in all three 

images, microcalcification contrast was significantly greater in the high-order weighted synthetic 

mammogram compared to the other images (Figure 4.22). This qualification of comparing only 

the microcalcifications visible in all three images is important, since it emphasizes the point that 

this study was not designed to assess relative differences in the visibility of all 

microcalcifications or their clustering. As such, the findings cannot be used to compare the 

clinical value of the two different imaging modalities - standard mammography and sDBT. 

Nevertheless, the findings were helpful in guiding continued work to optimize the forward 

projection algorithms that generate the synthetic mammograms. 

 

 
 

Figure 4. 22. A comparison of microcalcification contrast in the actual mammogram and 
synthetic mammograms generated from information collected by stationary digital breast 
tomosynthesis (sDBT). Eight microcalcifications visible in the actual mammogram (red bars) 
and two synthetic mammograms generated by sDBT, including a synthetic mammogram 
generated with a polynomial weighting function of order N=1 (blue bars) and a synthetic 
mammogram generated with a polynomial weighting function of order N=40 (orange bars), were 
used for comparison. The average microcalcification contrast in the synthetic mammogram 
generated using a high-order weighting (N=40) was significantly higher than the actual 
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mammogram and synthetic mammogram of order N=1 (* indicates p<0.05 by Student’s t-test). 
Figure adapted from [Puett 2019b]. 
 
4.4.2 Phantom-based testing of a forward projection approach incorporating feature 
enhancement 
 
 Forward projection refers to the steps in the image processing chain that integrate the 

information contained in the reconstructed image slices of the 3D image stack into 2D synthetic 

images (see 2.6 The image processing chain that generates sDBT images and the value of the 

synthetic mammogram, 3.5.3a The image processing chain for sDBT in context, and 3.5.3e 

Forward projecting the 3D image space into synthetic 2D mammograms). An understanding of 

the relationships between weighted forward projection and the visibility of features-of-concern 

provided a foundation for incorporating feature enhancement into the multistep process that 

generated the final synthetic images (see 4.4.1 Feature detectability in the synthetic mammogram 

as a function of intensity weighting during forward projection). This multistep process involved 

combining Laplacian decomposition, MSER-based feature identification, feature weighting 

through depth, and weighted recombinations of the resulting frequency-sorted and feature-

weighted image slices. The processing chain culminated in a set of synthetic images, including a 

standard synthetic mammogram and two pathology-enhanced synthetic mammograms, one 

dedicated to the display of microcalcifications and the other to the display of masses (see 3.5.3e 

Forward projecting the 3D image space into synthetic 2D mammograms). Phantom-based image 

quality assessments (see 3.6.1a Quantifying signal and noise) were used to evaluate the 

performance of the feature-enhancement approach. 

 First, the appearance of mass and microcalcification mimics present in the ACR phantom 

(see 3.4.1 Breast-mimicking phantoms and 3.6.1 Measuring image quality and quantifying 

feature detectability) were asssessed. Standard, mass-enhanced, and microcalcification-enhanced 
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sDBT synthetic images of the ACR phantom were generated and compared to the processed 

FFDM image and synthetic image generated by conventional DBT (Figure 4.23). 

 

 
Figure 4. 23. Representative images of the American College of Radiology mammography 
accreditation phantom, allowing a comparison of the appearance of features in the mammogram 
and synthetic images generated by conventional digital breast tomosynthesis (DBT) and 
stationary digital breast tomosynthesis (sDBT). From left to right, these examples include a 
processed full field digital mammography (FFDM) image, a synthetic image generated by 
conventional digital breast tomosynthesis, a standard synthetic image generated by sDBT, and 
sDBT pathology-enhanced synthetic images. Figure adapted from [Puett 2020a]. 
 
 Contrast, CNR, and the FWHM were measured in these images for the three largest 

microcalcification clusters (Figure 4.24A-C), since only these clusters were displayed 

consistently in images generated by all three modalities. Qualitatively, the next smallest cluster 

of microcalcifications was more visible in the FFDM image compared to both the conventional 

DBT and sDBT synthetic images. For the three clusters analyzed, microcalcification CNRs in 

both the conventional DBT synthetic image and the microcalcification-enhanced sDBT synthetic 

image were significantly higher than the microcalcification CNR in the FFDM image (Figure 

4.24B). Additionally, the microcalcification FWHM was smallest in the microcalcification-

enhanced sDBT synthetic image (Figure 4.24C), demonstrating that the microcalcifications were 

displayed with less blur (see 3.6.1c Measuring microcalcification size). Of note, the FWHM of 
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the microcalcification signal was greatest in the mass-enhanced sDBT synthetic image, 

emphasizing the significant impact of processing on the display of diagnostically-important 

features in the mammogram and the potential value of utilizing different processing approaches 

to generate different synthetic mammograms dedicated to either masses or microcalcifications.  

 Contrast and CNR for the five mass mimics present in the ACR phantom were compared 

in the FFDM image and the conventional DBT and sDBT synthetic images (Figures 4.24D and 

E). The smallest masses (numbers 4 and 5) had the highest contrast and CNR in the mass-

enhanced sDBT synthetic image compared to the FFDM and conventional DBT synthetic 

images. Also, the mass-enhanced synthetic sDBT images had higher mass contrast and CNR than 

the standard and microcalcification-enhanced sDBT synthetic images, again suggesting value to 

providing a synthetic image dedicated to displaying soft-tissue features.  
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Figure 4. 24. Image quality measurements in the processed full field digital mammography 
(FFDM) image and synthetic images generated by conventional digital breast tomosynthesis 
(DBT) and stationary digital breast tomosynthesis (sDBT) of the American College of Radiology 
mammography accreditation phantom (ACR Phantom). For sDBT, standard, microcalcification-
enhanced (MC-enh), and mass-enhanced (mass-enh) synthetic images were available for 
comparison. Since each microcalcification (MC) cluster contained 5 mimics, statistical analysis 
could be peformed during the comparison of MC contrast (A), CNR (B), and FWHM (C). * 
represents a statistically significant difference (p<0.05) between the synthetic image and the 
FFDM image for all three microcalcification clusters. Contrast (E) and CNR (F) of the 5 mass 
mimics present in the ACR Phantom were also compared. (F) A representative x-ray image of 
the ACR phantom. The numbers identify the microcalcification cluster (red) and mass (blue) 
mimics.   
 
 The appearance of mass and microcalcification mimics present in the combined CIRS 

Biopsy and Imaging phantoms (see 3.4.1 Breast-mimicking phantoms) was also asssessed. 

Stacking the CIRS Biopsy phantom, which presents pathology against a smooth background, on 
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top of a single slab of the CIRS Imaging phantom with its complex background, provided the 

opportunity to demonstrate how the image processing chain used to generate sDBT synthetic 

images minimizes the display of background features present at depths other than the pathologic 

feature-of-concern. Figure 4.25 shows the processed FFDM, conventional DBT synthetic, and 

sDBT synthetic images of this phantom configuration. In the FFDM and conventional DBT 

synthetic image, the swirled background pattern was superimposed on the mass and 

microcalcification mimics, even though these features were actually present at different depths. 

However, since the processing to generate the mass-enhanced sDBT synthetic image weighted 

the display of structures as a function of their location in depth from the identified features-of-

concern, the swirled background was less prominent in the pathology-enhanced synthetic sDBT 

image compared to the FFDM image and conventional DBT and standard sDBT synthetic 

images. Line profiles drawn through a feature-of-concern showed a more stable signal intensity 

in the pathology-enhanced sDBT synthetic image, suggesting that the pathology was less likely 

to be obscured by overlapping features present at different depths. Similarly, since the 

microcalcification-enhanced synthetic sDBT image processing approach provided higher 

weighting to microcalcifications relative to other features, microcalcification visibility was not 

diminished by overlapping regions.  
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Figure 4. 25. The processed full field digital mammography (FFDM) image and synthetic images 
generated by conventional digital breast tomosynthesis (DBT), and stationary digital breast 
tomosynthesis (sDBT) of the CIRS Biopsy phantom stacked on top of a single slab of the CIRS 
Imaging phantom. The blue boxes demonstrate the appearance of the same mass in each image, 
and the red boxes demonstrate the appearance of a mass with calcifications. Note the relative 
absence of the swirled background pattern in the pathogy-enhanced sDBT synthetic images 
relative to the others. Line profiles drawn across the same mass mimic in each image 
demonstrate the effects of the weighting functions applied during the processing to generate 
these images. The pixel intensities of each line profile were normalized so that the shapes of each 
profile could be compared more directly. For example, in the mass-enhanced synthetic sDBT 
image, pixel intensities were stable across the mass, whereas overlapping background features 
from the CIRS Imaging slab present at a different depth partially obscured the mass in the other 
images. 
 
  Finally, the appearance of mass and microcalcification mimics present in the CIRS 

Imaging phantom was asssessed. The CIRS Imaging phantom presents mass and 

microcalcification mimics in a complex background (see 3.4.1 Breast-mimicking phantoms). 

Figure 4.26 shows this phantom as it appears in the processed FFDM image and synthetic images 
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generated by conventional DBT and sDBT. The overlapping background features make it 

difficult to visualize microcalcifications and masses in the processed FFDM, conventional DBT 

synthetic image, and standard synthetic image generated by sDBT. However, by applying 

weighting functions to the detected microcalcification or mass features, and thereby down-

weighting the overlapping structures present at different depths (see 3.5.3e  Forward projecting 

the 3D image space into synthetic 2D mammograms), the visibility of these features was 

improved (Figure 4.26). 

 
 

Figure 4. 26. The processed full field digital mammography (FFDM) image and synthetic images 
generated by conventional digital breast tomosynthesis (DBT), and stationary digital breast 
tomosynthesis (sDBT) of the CIRS Imaging phantom. The blue boxes demonstrate the 
appearance of three mass mimics in each image, and the red boxes demonstrate the appearance 
of two microcalcification clusters. By applying microcalcification and mass weighting functions 
during the processing to generate the pathology-enhanced synthetic sDBT images, the visibility 
of these features could be improved.  
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4.4.3 The effect of background equalization on the appearance of the synthetic mammogram 
 
 Decreasing signal intensity in the breast image periphery relative to the central breast 

region is an inherent image presentation problem in the mammogram, given the fact that there is 

less tissue thickness where the peripheral breast loses contact with the compression paddle. 

Without correction, this difference in background intensity between central and peripheral 

regions is also present in the synthetic mammogram. As such, the peripheral breast tissue is 

difficult to visualize, as demonstrated in representative “uncorrected” clinical images (Figure 

4.27). However, the background equalization algorithms developed for this study (see 3.5.3f 

Equalizing background in the synthetic mammogram) stabilized the signal intensity from the 

central to peripheral breast image regions in the “corrected” synthetic mammograms, across the 

full spectrum from low to high-ordered weighting. 
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Figure 4. 27. The effect of applying background equalization algorithms to the synthetic 
mammograms generated by stationary digital breast tomosynthesis (sDBT). Background 
equalization algorithms stabilized the signal intensity from the central to peripheral breast image 
regions (line profiles) when applied with both low-order (A) and high-order (B) weighting 
during forward projection. Uncorrected and corrected images are displayed at the same 
window/level settings. Figure adapted from [Puett 2019b]. 
 
4.4.4 The clinical utility of sDBT-generated synthetic mammograms compared to standard 

mammography 
 
 The viability of applying the image processing chain incorporating feature-enhancement 

during forward projection, which was developed through phantom-based experimentation, to 

clinical images was demonstrated using sDBT studies from two patients with concerning breast 

lesions. Figure 4.28 presents a mediolateral oblique (MLO) view of a breast with extremely 
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dense tissue, which obscures soft tissue lesions and their boundaries, making it more difficult to 

assess the likelihood of malignancy. As can be appreciated by comparing the conspicuity of the 

mass lesion in the FFDM image and the set of synthetic sDBT images, processing designed to 

isolate the mass in depth improved the display of its boundaries.  

 
Figure 4. 28. A comparison of the appearance of the full field digital mammogram and synthetic 
images generated by stationary digital breast tomosynthesis (sDBT) of a patient with extremely 
dense breast tissue containing a maligancy. Biopsy of the concerning soft tissue mass (indicated 
by the white arrow) demonstrated intraductal carcinoma and ductal carcinoma in-situ. Note the 
improved conspicuity of the mass boundaries in the mass-enhanced synthetic image compared to 
the other images.  The cropped image represents a 5.5 x 5 cm region. The full field digital 
mammogram (FFDM) and sDBT images were acquired at different times and thus involved 
different compressions.  
 
 Figure 4.29 demonstrates the effects of different processing approaches on the 

appearance of a craniocaudal (CC) view of a breast with microcalcifications. As a result of the 

the higher weighting given to microcalcifications relative to their background, it was easier to 
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appreciate the distribution of microcalcifications in the microcalcification-enhanced synthetic 

image, as compared to the FFDM, standard synthetic, and mass-enhanced synthetic images. 

 

 
 
Figure 4. 29. The processed full field digital mammogram and synthetic images generated by 
stationary digital breast tomosynthesis (sDBT) of a breast containing microcalcifications. The 
cropped image represents a 2.5 x 2.25 cm region containing an area of grouped calcifications 
(indicated by the white arrow). The pathology findings from a stereotactic breast biopsy were 
indeterminate, and an excisional biopsy was recommended. Note the improved conspicuity of the 
microcalcification clustering in the microcalcification-enhanced synthetic image compared to the 
other images.  The full field digital mammogram (FFDM) and sDBT images were acquired at 
different times and thus involved different compressions.  
 
 These representative examples demonstrate that the current image processing chain can 

be successfully applied to actual patient images. However, many questions remain. As currently 

implemented, the synthetic mammography information from an sDBT study is presented as a set 

of synthetic images. Although phantom-based experimentation suggests potential benefit to this 
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approach, which provides an opportunity to optimize the image processing for a specific 

pathology, this idea of presenting a set of different synthetic images is new, and as such, its true 

clinical value will need to be tested. A well-designed reader study will be necessary to determine 

if readers are more accurate when interpreting a set of pathology-enhanced synthetic images 

compared to standard FFDM or a single synthetic image generated by conventional DBT or 

sDBT, and if so, whether the improved accuracy is enough to justify the added expenses in 

reader effort, computation, and storage.   

4.5 Summary for Chapter 4: Findings 
 
 This work sought to advance the clinical potential of sDBT by using a broad spectrum of 

research approaches, ranging from phantom-based experimentation to human study. As 

demonstrated by the results summarized in Chapter 4: Findings, testing often sought to define the 

performance of sDBT relative to other approved and commercially-available breast imaging 

devices, representing current state-of-the art technologies. Taken as a whole, the findings 

demonstrate that this experimental technology has the potential for providing images of high 

quality and diagnostic utility. Additionally, by characterizing the problematic issues of scatter, 

noise, and artifact, the findings allowed development of image processing approaches that 

minimized their impact on image quality. Finally, by combining the findings from this broad 

experience with sDBT, a complete image processing chain capable of generating feature-

enhanced synthetic mammograms was developed. This important step prepares the way for 

ongoing human study and provides a foundation upon which future work can be built. Perhaps of 

most value, the findings help identify specific technological and computational concerns that still 

need to be addressed, and recommendations for future work suggested by these findings are 

discussed in Chapter 5: Analysis and Synthesis.    
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CHAPTER 5: ANALYSIS AND SYNTHESIS
 
5.1  Introduction to Chapter 5: Analysis and Synthesis 
 
 Chapter 5: Analysis and Synthesis reviews the findings of this work in light of the rapidly 

evolving field of 3D mammography. Advances are being made through research at the academic 

level and also in the commercial sector, as companies compete in this growing and competitive 

market. These advances are occurring in both the technology of the devices that capture the 

information at the time of the study as well as the computational steps that process the images 

that are eventually displayed for interpretation. Indeed, good technology is wasted if the 

processing is inadequate to display the information as a clinically-useful image. Additionally, 

processing can shine light on the limits inherent to a specific technology. In this way, processing 

often guides system modification, and as a result, technology and processing tend to evolve 

together. The overall goal of this work was to evaluate the potential clinical utility of stationary 

digital breast tomosynthesis (sDBT) and, through processing, advance sDBT as a clinical tool 

(see 1.2 Purpose of this work). As a result of this work, processing was developed to address the 

problematic issues of scatter, noise, and artifact as well as complete the evolution of sDBT to a 

viable clinical tool through the incorporation of a synthetic mammography capability. The utility 

of the processing when integrated into the sDBT system was tested across a spectrum of applied 

tasks. sDBT images of breast-mimicking phantoms, lumpectomy tissue specimens, and patients 

were compared to images acquired by commercially-available full field digital mammography 

and conventional digital breast tomosynthesis (DBT) devices, which provided state-of-the art 

technologies as references. Indeed, this dissertation was focused on sDBT and therefore the 
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challenges introduced by this novel system. However, issues addressed in this work are inherent 

to some degree in all 3D mammography systems. As such, it is anticipated that the findings will 

be of value to the field of 3D breast imaging in general. Chapter 5: Analysis and Synthesis 

discusses the findings from this work in this broader context. It highlights differences between 

sDBT and conventional DBT in light of their functionality and anticipated directions for ongoing 

development. The discussion is initially organized around the three key issues that force 

compromise in the design and operation of 3D mammography systems: resolution, scatter, and 

artifact. Understanding how different systems handle these issues demonstrates the critical 

interplay of technology and processing, as each system seeks to generate high-quality images 

containing the most useful clinical information. The discussion then turns to the processing chain 

that generates the synthetic mammogram and the key step of feature-identification, since the 

development of synthetic mammography with an enhanced feature display is an active area of 

current research in this field. To conclude, the point is made that the sDBT technology is now 

poised to become a valuable clinical tool. 

5.2 Discussion for Chapter 5: Analysis and Synthesis 
 
5.2.1 Using resolution, scatter, and artifact to appreciate differences in DBT systems and 
 directions of development 
 
 The use of DBT has grown rapidly in the US since the first device was approved by the 

FDA in 2011 [Gao 2017]. Since then, seven manufacturers have brought devices to the market 

world-wide, each with different approaches to acquire the projection images at the time of the 

study. Each device seeks to produce projection images of the highest possible quality, as these 

projections contain the information utilized by processing to generate the images displayed for 

interpretation. The goal is to minimize noise, scatter, and artifact in order to capture images with 

the maximum possible resolution, working within the strict requirements imposed by using x-
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rays for breast screening. More specifically, mammographic screening requires low radiation 

doses and fast scan times. Additionally, the images need to display tissue features with very 

different tissue compositions and sizes and therefore image characteristics. Design differences 

reflect attempts to optimize performance within these constraints, resulting in compromises in 

each system. These compromises involve a number of physical parameters, but in large part, they 

deal with the need to translate an x-ray source to different positions relative to the breast to 

acquire the set of projection views. As demonstrated throughout this work, sDBT is 

fundamentally different from all of the commercially-available systems, as it acquires projection 

images using an array of stationary and rapidly-responsive x-ray sources made possible by 

carbon-nanotube (CNT) technology. The implications in terms of acquiring wider angle spans 

quickly and eliminating source blur are clear. However, these benefits were achieved at a price, 

as the design and operation of the current multi-source x-ray tube itself forced compromise. The 

impact of this tube design on the key issues of resolution, scatter, and artifact are discussed 

below, with comparison to the commercially-available technologies against which sDBT is being 

judged. As a result of this comparison, directions for the ongoing development of sDBT are 

suggested in light of the evolving field of 3D mammography in general.  

5.2.1a Resolution: anode focal spot size, source motion, detector pixel size, and noise  
 
 Resolution reflects the geometry of the imaging system and influences the quality of the 

images it produces (see 2.4 Defining and measuring the quality of the digitized image and 2.5 

Image quality problems inherent to tomosynthesis in general and sDBT in particular). 

Commercially-available DBT technology requires physically moving an x-ray source through 

space to collect the series of oblique projections used to generate the 3D image [Zheng 2019]. As 

noted above, the limitations imposed by source motion are responsible for many of the design 
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differences in current 3D mammography devices (see 2.2.4 The clinical value and technical 

limitations of conventional 3D mammography). For example, since source motion elongates the 

effective focal spot in the direction of motion, some commercially-available systems utilize a 

step-and-shoot protocol [Mackenzie 2017, Vedantham 2015]. However, this approach prolongs 

the overall scan time, increasing the risk of introducing blur by patient motion and limiting the 

number projection views and angle span achievable during the scan. Decreasing the x-ray on-

time, thereby decreasing the distance the source travels while firing, also decreases focal spot 

elongation. However, it decreases the signal-to-noise ratio, as fewer photons are released during 

the shorter on-time. Increasing the relative noise contribution to the total signal, especially in a 

low-dose study such as DBT, compromises image quality (see 2.4 Defining and measuring the 

quality of the digitized image). Similarly, decreasing the size of the detector pixel can improve 

resolution. However, smaller pixels collect fewer photons, again compromising the signal-to-

noise ratio.  

 The appeal of using stationary arrays of CNT-enabled x-ray sources is that it solves the 

problem of source motion. As such, stationary DBT has the potential to collect higher resolution 

images. However, as currently-operated, the resolution of the first and second generation sDBT 

devices is similar to conventional DBT, despite its stationary design, as demonstrated by 

comparisons to the parent moving-source DBT system that provided the foundation for sDBT. 

This similarity was reflected by their modulation transfer functions (MTFs) (see 3.5.1a 

Differences in the breast-imaging systems) as well as the fact that sDBT and conventional DBT 

displayed equivalent in-plane microcalcification sizes in images of lumpectomy specimens when 

binning was used to equalize the detector pixel sizes (see 4.3.1 Visualizing microcalcifications in 

lumpectomy specimens). Finally, as expected given its larger anode focal spot size, the 
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resolution of the sDBT system was lower than standard mammography, perhaps best reflected at 

the clinical level by the display of microcalcifications. Readers consistently rated the conspicuity 

of microcalcifications higher in standard mammograms than sDBT images, when comparisons 

were made to both reconstructed 3D sDBT images of actual patients (see 4.3.2c Reader 

preference when interpreting image features) and synthetic slab images of lumpectomy 

specimens (see 4.3.1 Visualizing microcalcifications in lumpectomy specimens).   

 The main technological issue lowering the resolution of the sDBT systems is the focal 

spot size. Although sDBT solves the problem of source blur, the current tube design requires 

using larger anode focal spot sizes than conventional DBT, since the stationary anode does not 

include a cooling method for dissipating heat generated during x-ray production. In order to 

achieve the dose rates necessary for clinical imaging, the focal spot size is increased to distribute 

anode heating over a larger area. To compensate, the sDBT detector is operated in a full-

resolution mode, with a small detector pixel size of 70 µm. However, as noted above, smaller 

pixels result in a lower signal-to-noise ratio, and the relative increase in noise must be addressed 

in processing. Therefore, the current performance of sDBT balances its advantages of fast 

scanning over a large angular span with no source motion against its current limitations of larger 

focal spot sizes and higher noise.  

 Altogether, sDBT performed as well as, and in many cases better than, conventional 

DBT, when quality was assessed in synthetic images of breast-mimicking phantoms (see 4.4 

Incorporating synthetic mammography into sDBT) and when readers rated the display of 

microcalcifications in synthetic images (see 4.3.1 Visualizing microcalcifications in lumpectomy 

specimens). As such, it can be anticipated that changes in the x-ray tube design to improve the 

resolution of the sDBT system would produce a device with significant advantages over the 
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currently-available technology. The key will be the incorporation of a rotating anode or anode 

cooling, thereby supporting electronic focusing to achieve smaller focal spot sizes and higher 

dose rates to improve the resolution and signal-to-noise ratio.    

5.2.1b Scatter: approaches to practical scatter reduction 
 
 Although scatter is present in every x-ray image, the scatter signal can actually 

predominate the non-scattered or primary signal in some modalities and anatomic environments 

(see 2.4.3 Scatter and noise). As such, scatter reduction techniques such as air gaps or anti-scatter 

grids are utilized during most x-ray studies, including standard mammography. These techniques 

make it less likely that photons traveling oblique paths, and thus more likely to have been 

scattered, will reach the detector.  However, tomosynthesis works by collecting a series of 

projection views at oblique angles. As such, standard scatter-reduction techniques are 

problematic, since they further decrease the photon count of an already low-dose technique, 

thereby compromising the signal-to-noise ratio (see 2.4 Defining and measuring the quality of 

the digitized image and 2.5 Image quality problems inherent to tomosynthesis in general and 

sDBT in particular). As demonstrated in this work, there is a significant scatter component to the 

total signal in sDBT images (see 4.2.1 Quantifying scatter in contrasted and non-contrasted 

sDBT images). In fact, similar to findings with conventional DBT, there is a strong correlation 

between the scatter-to-primary (SPR) ratio and breast thickness, with SPR values in the range of 

0.4 for 3 cm thick and greater than 0.5 for 5 cm thick tissues [Puett 2018b].  

A variety of solutions have been proposed for addressing the issue of scatter in DBT 

imaging. One DBT system incorporates a linear anti-scatter grid just above the detector 

[Vedantham 2015]. Others have proposed the use of a precomputed scatter library, which can be 

used to efficiently look up scatter values based on patient characteristics and a given set of 
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system parameters [Feng 2014]. Our approach to scatter correction involved acquiring a second 

scan to indirectly sample scatter using a primary sampling device (PSD). This method provides a 

patient-specific measure of scatter, which can be corrected through processing. Scatter correction 

through image processing improved image quality, yielding a statistically-significant 

improvement in the CNR when a filtered scatter-correction algorithm addressing the noise 

component of the scattered signal was incorporated into the image processing chain (see 4.2.2 

The effect of scatter and noise correction through processing on sDBT image quality). The 

additional dose from the second scan with the PSD in place is only 3% of the scan without the 

PSD. However, this additional imaging increases the overall study duration, increasing the breast 

compression time and chance for patient motion. Improving the dose rate of the sDBT system 

(see 5.2.1a Resolution: anode focal spot size, source motion, detector pixel size, and noise) and 

utilizing a detector with a short readout time would allow for the fast collection of images with 

and without the PSD in place. Future work is needed to develop the hardware to quickly and 

safely insert and remove the PSD from the field-of-view during clinical imaging.  

5.2.1c Artifact: angular span and reconstruction 
 
 The ability to detect the boundaries of a feature in an x-ray image through depth is 

directly related to the angular span of the projection images [Zhou 2007]. A wider-angle span 

supplies more depth information, reducing the amount of tissue overlap in the reconstructed 3D 

image space. In addition to improving depth resolution, increasing the angle span would be 

expected to yield fewer out-of-plane artifacts in the images displayed for interpretation. The 

benefits of the wider span of projection views achievable by sDBT compared to conventional 

DBT was demonstrated by the smaller artifact spread function (ASF) through the reconstructed 

sDBT image stack of lumpectomy specimens (see 4.3.1. Visualizing microcalcifications in 
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lumpectomy specimens). This work also demonstrated the clinical utility of dense-feature artifact 

reduction algorithms for sDBT (see 4.2.3 Understanding and removing artifact related to highly-

attenuating features with stationary tomosynthesis and 4.2.4 Applying artifact reduction 

algorithms to sDBT). However, artifact cannot be completely eliminated, suggesting that the 

ability to collect a wider span of projection views would also be of benefit. The first and second 

generation sDBT devices studied in this work offered an angle span of 28o and 35o, respectively. 

Placing this in context, commercially-available DBT devices offer angle spans ranging from 15 

to 50o [Vedantham 2015]. In addition to improving resolution, technological changes in the 

CNT-enabled x-ray source allowing a higher dose rate, combined with a detector offering a full-

resolution pixel size with a faster read-out rate, would provide the opportunity to collect a wider 

span of projection views within a short scan time.  

5.2.2 Appreciating the critical step of feature-identification for enhanced synthetic 
mammography 

 
 The synthetic mammogram is proving to be a valuable clinical tool [Durand 2018, 

Ratanaprasatporn 2017]. In fact, the ability to generate a clinically-useful synthetic mammogram 

is considered to be a key step by which 3D mammography will replace standard 2D 

mammography as the breast imaging tool of choice, since it would obviate the need to collect 

both 2D and 3D mammography scans for screening (see 2.6 The image processing chain that 

generates sDBT images and the value of the synthetic mammogram). Therefore, the 

incorporation of a synthetic mammography capability into the sDBT system was identified as a 

key step to advance the clinical potential of the sDBT system and therefore considered a Specific 

Aim of this dissertation project (see 1.2 Purpose of this work, 1.3 Research questions asked in 

this work, and 4.4 Incorporating synthetic mammography into sDBT). As originally conceived, 

the synthetic mammogram was seen as a complement to the 3D image stack with several 
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potential uses. For example, compared to the full image stack, the synthetic mammogram could 

be compared more directly to previous standard mammograms in order to assess change. Also, 

since it summarized the findings distributed through the full image stack into a single image, it 

could provide an efficient reference, guiding readers to regions of concern in the full image 

stack. However, research over the past few years has demonstrated that the synthetic 

mammogram has the potential to offer readers information with a higher diagnostic value than 

the standard mammogram [James 2018]. Improving the diagnostic value of the synthetic 2D 

image is accomplished by identifying features-of-interest in the 3D image stack and emphasizing 

these features in the synthetic image. In other words, the synthetic mammogram may be able to 

combine the benefits of decreased tissue overlap available in the 3D image stack with the 

efficiency of interpreting a 2D image.  However, identifying and enhancing breast pathology in 

the x-ray image are difficult tasks, given the highly-variable appearance of diagnostically-

important breast lesions. For example, masses and microcalcifications have very different image 

properties, including size and contrast, and often need to be distinguished from the dense and 

complex backgrounds in which they are located. As a result, numerous steps are required in the 

image processing chain that generates the synthetic mammogram. In fact, the algorithms 

developed for sDBT generate a set of synthetic images, each the result of a different image 

processing chain dedicated to the display of a specific type of pathology, such as the soft-tissue 

mass or microcalcification cluster. These processing chains incorporate combinations of 

Laplacian decomposition, weighted forward projection, and weighted recombination customized 

to sDBT to generate the synthetic image (see 4.4 Incorporating synthetic mammography into 

sDBT). Testing to date using objective measures of signal intensity and feature detectability 

suggest that these sDBT synthetic images will be useful (see 4.4.2 Phantom-based testing of a 
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forward projection approach incorporating feature enhancement). However, reader study of 

patient images will be required to determine their actual clinical value (see 4.4.4 The clinical 

utility of sDBT-generated synthetic mammograms compared to standard mammography). 

Several vendors offer the option to generate synthetic mammograms, including Hologic (C-

View), GE (V-Preview), and Siemens (Insight) [Durand 2018]. Each is proprietary and yields 

images that emphasize different characteristics. As such, the clinical value of each differs, and 

the development of computer algorithms to generate synthetic images from the information 

collected by a DBT study remains a rapidly-evolving area of quite active research [Geras 2019, 

James 2018]. In large part, this research is focused on improving the detection of features in the 

3D image space, so that diagnostically-important features are most-importantly (1) not missed, 

(2) accurately displayed, and (3) perhaps even enhanced in the synthetic image. Indeed, for all 

image processing approaches designed to produce feature-enhanced synthetic images, the 

accuracy of the feature-detection step is key.  

 Recent experience with standard 2D mammography as well as moving-source DBT has 

suggested that deep learning algorithms have the potential to improve the accuracy of feature 

identification [James 2018, Rodriguez-Ruiz 2018, Rodriguez-Ruiz 2019, Geras 2019]. GE offers 

a CAD-enhanced synthetic mammography option (Enhanced V-Preview) that identifies up to 

five suspicious soft tissue lesions in the 3D image stack and enhances the lesions in the synthetic 

image [iCAD 2017]. Hologic has developed an artificial intelligence-based approach to generate 

6-mm-thick “SmartSlices,” in order to reduce the number of images and storage space 

requirements of the 3D stack while maintaining important feature display [Hologic 2020]. The 

image processing chain developed for sDBT in this dissertation work should accommodate a 

deep learning feature-detection algorithm. However, such networks require extensive training. 
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As such, their development is dependent on the availability of a library of annotated images 

displaying a broad range of pathology. Building such a library of actual patient images would 

require many years of ongoing clinical experience, which should be considered an important step 

for sDBT. However, recent advances in the generation of images using a virtual DBT model 

have suggested the opportunity to generate image databases through virtual clinical studies for 

algorithm training [Badano 2018]. Computer training based on a virtual sDBT system and a 

collection of virtual sDBT images would greatly accelerate the development of image processing 

for the sDBT system and should be considered as a future direction for research with this 

experimental technology.  

5.3 Summary for Chapter 5: Analysis and Synthesis 
 
 This dissertation work sought to advance the clinical potential of sDBT. It did so through 

experimentation to understand the problematic areas of scatter, noise, and artifact in the sDBT 

system and to compare the performance of sDBT to commercially-available devices that define 

the current standards for reference. The findings were used to develop key image processing 

capabilities for the sDBT system, culminating in a complete image processing chain to generate 

synthetic mammograms. By identifying the most problematic limitations in the sDBT system, 

this work also suggested future avenues of technological development that would complement 

ongoing advances in processing, since technology and processing need to evolve together to 

produce a system capable of generating images with the highest clinical value. Chapter 5: 

Analysis and Synthesis placed the findings of this dissertation work in the context of the rapidly-

evolving field of 3D mammography in general. As discussed in this chapter, continued work 

with the sDBT system should focus on incorporating anode cooling to support smaller focal spot 

sizes and higher dose rates, an efficient scatter measurement system to collect the information 
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needed for scatter correction, and a digital detector with a high readout rate. In addition, from a 

computational standpoint, building an extensive library of sDBT images through continued 

clinical studies or virtual modeling will provide the data for the ongoing development of 

advanced image processing. The goal of this project was to advance the clinical potential of 

sDBT, and as a result of this work, sDBT is now capable of generating both 3D and synthetic 2D 

images of high clinical value. Additionally, directions for ongoing development are better 

defined. At this point, sDBT is well-positioned for the next step in its evolution, as it appears 

clear that this unique technology provides an opportunity to improve the detection and evaluation 

of breast cancer. 
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CHAPTER 6: CONCLUDING WITH A LOOK TO THE FUTURE
 
6.1 Exploring unique diagnostic applications of sDBT: dynamic, magnified, and 

multiplexed imaging  
 
 This dissertation work focused on the clinical potential of sDBT as a screening tool. The 

findings are encouraging, demonstrating that this experimental technology performs as well as 

commercially-available standards while also suggesting avenues of research and development in 

terms of both technology and processing that may significantly improve its performance (see 

Chapter 5: Analysis and Synthesis). Given its potential to collect images over a wider-angle span 

more quickly than existing technologies as well as its potential for a higher system resolution, 

sDBT is certainly a promising screening tool. However, sDBT may prove to be of most value in 

the arena of diagnostic breast imaging, which refers to the detailed characterization of 

concerning lesions identified by screening. Given its unique design, sDBT can perform 3D breast 

imaging tasks that are difficult or even impossible with conventional 3D mammography. 

Examples include dynamic, multiplexed, and magnified 3D mammography. As a group, these 

approaches to diagnostic breast imaging require the ability to coordinate and collect multiple 

different projection views quite quickly or even simultaneously. Magnified mammography 

utilizes a small focal spot size and positions the breast closer to the x-ray source. Given this 

geometry, image quality is significantly compromised by blur if there is any motion from the x-

ray source or patient, as these motions have a relatively greater influence on resolution given the 

larger distance between the target and detector [Marshall 2012]. As such, a brief scan time and 

stationary x-ray source at image acquisition would be beneficial. Multiplexed imaging refers to 
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the collection of several projection views simultaneously, thereby providing an opportunity to 

complete a full scan very quickly [Yang 2011]. Collecting multiple projections simultaneously is 

not possible when working with a single source. Dynamic contrast-enhanced, or four-

dimensional (4D), mammography involves collecting images through time, as intravenously-

injected contrast accumulates in and then washes out from a breast lesion [Brandan 2016]. Both 

the appearance of the contrasted vasculature as well as the timing of the wash-in and wash-out 

phases can have diagnostic value [Dromain 2006, Diekmann 2011]. Therefore, the ability to 

collect temporal information from multiple views quickly would be beneficial. Collectively, 

these diagnostic applications take advantage of the very high temporal resolution offered by the 

sDBT system. The processing algorithms developed in this work can be adapted to these unique 

image acquisition protocols, although modifications to the hardware that coordinates source 

firing, such as the electronic control system (ECS), and detector activity would also need to be 

made.  

6.2 Exploring advanced image processing for sDBT: deep learning and radiomics 
 
 The application of the image processing and technological advances suggested by this 

work should prepare this experimental technology for large-scale human studies. From a 

processing standpoint, the collection of patient images across a broad spectrum of breast 

densities and pathologies would provide a library for future study. Such a library would be 

invaluable, as it would make possible the exploration of cutting-edge image processing 

approaches, including deep learning [Geras 2019] and radiomics [Tagliafico 2018]. In its most 

basic form, deep learning exposes a computational network to a large number of images, 

applying algorithms with which the computer learns to recognize key patterns. With enough 

experience, the network can be trained to accomplish a variety of tasks, including feature 
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detection and feature classification. For example, the network might recognize a potential mass 

in the reconstructed image stack, bringing it to the reader’s attention, perhaps by emphasizing it 

in the synthetic mammogram (see 5.2.2 Appreciating the critical step of feature-identification for 

enhanced synthetic mammography). Current experience with deep-learning suggests the need to 

expose a network to thousands of images to train an accurate pattern recognition [Shen 2019]. 

Radiomics builds upon this concept of pattern recognition, using computational approaches to 

extract image features from a defined region of the image with known pathology. The goal is to 

associate image features with physical characteristics of the lesion, such as genetic or molecular 

signatures [Tagliafico 2018]. To the human eye, the extracted image features may appear 

meaningless, but recent work with mammography has shown that the application of deep 

learning and radiomics allows a correlation between image features and breast cancer type [Yala 

2019]. Additionally, there is early evidence that radiomic analysis can identify image markers 

that may help guide treatment [Tagliafico 2019]. In light of these exciting possibilities, we can 

only imagine the potential utility of providing these algorithms with the additional high-quality 

and 3D information collected by an sDBT study.  

6.3 Applying the lessons learned  
 
 To conclude, it is hoped that the work contained in this dissertation will provide a useful 

step toward expanding our clinical experience with sDBT. The lessons learned will certainly 

impact the direction of future progress with sDBT. However, these lessons also have application 

to CNT-enabled stationary tomosynthesis devices across the diverse spectrum of imaging tasks 

that are being explored. Currently, stationary tomosynthesis is also being tested at the clinical 

level for dental, musculoskeletal, and chest imaging. Also, a CNT-enabled stationary head CT 

scanner is under construction [Spronk 2020]. When viewed in this broader context, it is clear that 
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the true value of the work contained in this dissertation does not lie in details of the experimental 

findings themselves or the algorithms that have been developed specifically for sDBT, as these 

are expected to evolve with the technology over time. Rather, its value lies in the lessons that 

have been learned regarding the performance of stationary tomosynthesis devices in general and 

the opportunities for future study that the findings and developed tools will help make possible.   
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APPENDIX: DEVELOPING SYNTHETIC DENTAL RADIOGRAPHY
 
A.1 Recognizing the influential relationship between synthetic dental radiography and 
 synthetic mammography  
 
 Although this dissertation work was focused on breast imaging by stationary digital 

breast tomosynthesis (sDBT), it was carried out in the context of applying stationary 

tomosynthesis across a broad range of applications, using carbon nanotube (CNT)-enabled 

devices customized for different imaging tasks (see 2.3.2 Carbon nanotube-enabled x-ray source 

arrays and stationary digital tomosynthesis). The preclinical characterization of stationary 

intraoral tomosynthesis (sIOT) [Inscoe 2018] was of particular relevance, given the image 

processing challenges introduced by the unique dental anatomic environment. Lessons learned 

from experience with sIOT influenced the processing approaches developed for sDBT, which in 

turn provided much of the basis for the ongoing development of the processing approaches 

applied to the sIOT system.  

A.2 3D dental imaging and the potential clinical value of the synthetic dental radiograph 
 
 X-ray imaging is used extensively in clinical dentistry for screening and diagnosis. 

During intraoral imaging, which typically involves bitewing, periapical, or occlusal viewing, the 

x-ray detector is positioned inside the oral cavity, yielding one or more two-dimensional (2D) 

images. These images are immediately available and familiar to the dentist, such that their 

information can be used to make clinical decisions at that visit. However, 2D images are 

inherently limited by overlapping tissues, which can make it difficult to visualize pathology. 

Common problematic imaging tasks for which three-dimensional (3D) imaging has been shown 

to be helpful include the identification of interproximal caries [van Daatselaar 2003], recurrent 

caries adjacent to restorations [Nair 1998], root fractures in endodontically-treated teeth 

[Hekmatian 2018], and bone resorption around implants [Vera 2012].  
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 However, at least until recently, the technologies for 3D imaging have not been 

appropriate or practical for the busy dental clinic. Cone beam computed tomography (CBCT) is 

available, but the equipment is large, expensive to purchase, and difficult to maintain. Also, both 

its operation and image interpretation require specialized training and experience, and the 

relatively large field-of-view and number of image slices require longer interpretation times. It 

delivers a radiation dose that is unacceptably high for frequent use, and finally, and perhaps most 

importantly, CBCT has a lower in-plane spatial resolution than intraoral 2D imaging, and the 

images themselves often contain artifact [Schulze 2011]. As a result, CBCT is not used as a 

primary tool for caries detection [Park 2011]. Tuned-aperture CT (TACT) has been explored as 

an option to provide quasi-3D imaging using an intraoral detector [Webber 1997]. TACT 

involves the acquisition of multiple x-ray projections over a limited angle relative to the detector, 

providing the information to construct a 3D image. Relative to CBCT, TACT offers a higher in-

plane resolution but lower depth resolution. However, since the image processing steps that 

construct the 3D image require precise knowledge of the system geometry, care is needed when 

acquiring the images, and this relatively time-consuming process made TACT impractical for 

routine use [Tyndall 2008].   

 stationary intraoral tomosynthesis (sIOT) is an experimental 3D imaging technology that 

has been developed specifically for the busy dental clinic [Inscoe 2018]. sIOT uses a fixed and 

distributed array of carbon nanotube (CNT)-enabled x-ray sources. Similar to TACT, it acquires 

x-ray projections from multiple views relative to a fixed intraoral detector. However, the 

equipment itself and its operation were designed to mimic the standard intraoral x-ray equipment 

currently in use, and since the imaging geometry is stationary, no additional time or training is 

needed to perform the scan. Given its potential to provide some 3D information using a protocol 
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similar to standard intraoral imaging, sIOT may provide a viable 3D imaging option, and its 

utility is being explored for a host of imaging tasks. For example, previous work with sIOT has 

demonstrated its ability to reduce tooth overlap [Inscoe 2018, Mauriello 2018, Mauriello 2020] 

as well as significantly improve the detection of interproximal caries [Inscoe 2018, Mol 2015, 

Shan 2015] in the 3D images of ex-vivo tooth specimens, as compared to standard 2D intraoral 

radiography. A clinical study is underway to evaluate sIOT for the detection of interproximal 

caries in human subjects (ClinicalTrials.gov Identifier: NCT02873585).  

  However, sIOT does have limitations, perhaps most notably in the presentation of the 

information for interpretation. Similar to other 3D imaging technologies, the information 

obtained during a tomosynthesis study is most commonly displayed as a stack of image slices. 

This 3D stack of images is “reconstructed” by computer programs from the 2D information 

present in the multiple projection views collected at the time of the study. The reader scrolls 

through the stack of image slices to appreciate anatomic and pathologic changes through depth. 

In this way, features-of-interest can be separated from overlapping structures that would 

otherwise obscure them in a single 2D image. Typically, the reconstructed image slices step 0.5 

mm through depth, such that an sIOT scan can produce an image stack containing more than 40 

images. Reviewing all of these images takes time, and since the reconstructed images do not 

appear exactly the same as the standard 2D radiograph, training and experience are needed for 

accurate interpretation. Additionally, the reconstructed image slices often contain prominent 

artifact. This artifact results from the fact that tomosynthesis involves collecting only a small 

number of projection views over a limited angle span, and as a result, there is incomplete data to 

isolate features fully through depth. Artifact is most problematic when the images contain dense 

features with sharp edges, as is characteristic of enamel, bone, and especially metal, and can 
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include in-plane shadowing and out-of-plane ringing [Puett 2020b]. Even though these artifacts 

become less distracting with experience, they can hide pathology. have been shown to improve 

the visibility of regions adjacent to amalgam restorations and implants in the 3D image stack 

[Puett 2018c], although assessing subtle pathology in these critical boundary regions remains 

problematic. 

 Processing provided an opportunity to improve the appearance of the reconstructed image 

slices generated by sIOT, and as noted above, work developing image processing chains for 

sIOT was carried out alongside the development of processing for sDBT. Although the 

processing goals with sIOT and sDBT were similar and sought the display of high-quality 

images for interpretation, dental and breast imaging introduced quite different challenges, given 

their very different anatomic environments and the different clinical questions that the images 

were being used to answer. Working through these challenges provided invaluable lessons, so 

that the work on dental and breast imaging tended to evolve together. Initial work focused on 

segmentation approaches to reduce the dense-feature artifacts present in the reconstructed slices 

of the 3D image stack. With breast imaging, dense-feature artifact was most prominent around 

metal needles and wires used to guide biopsy, metal clips, and large calcifications (see 3.5.3c 

Reducing artifact, 4.2.3 Artifact reduction in reconstructed and synthetic sDBT images), while 

metal restorations and implants offered good models to study dense-feature artifact during dental 

imaging (see A.5 Understanding and correcting dense-feature artifact in sIOT images). However, 

even an artifact-reduced stack of reconstructed image slices proved problematic. An sIOT scan 

can produce a stack containing more than 40 images. Reviewing all of these images takes time, 

and since the reconstructed images do not have the same appearance as the standard 2D dental 

radiograph, training and experience are needed for accurate interpretation. Based on experience 
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with sDBT, synthetic radiography was explored as an option to combine the efficiency and 

familiarity of 2D imaging with the improved diagnostic accuracy of 3D imaging.  

  For the development of synthetic dental radiography, images of recurrent caries adjacent 

to previous restorations (CAR) and vertical root fractures (VRF) in extracted teeth were utilized 

(see A.3 Tooth specimens used to develop image processing for sIOT). These two pathologies 

were selected for study for several reasons. First, both conditions are challenging to diagnose in 

the clinic and represent conditions for which a 3D imaging tool would be beneficial. 

Additionally, both challenge tomosynthesis as an imaging modality, since they exemplify subtle 

pathologies adjacent to dense features. As a result, the processing chain producing the synthetic 

radiograph needed to conserve the pathologic feature in the image while also removing the often 

more prominent artifact and obscuring structures around them. Finally, from an image processing 

standpoint, CAR and VRF lesions are features with very different properties in the image. CAR 

lesions are diffuse with indistinct boundaries, while VRFs are thin and defined by sharp edges. 

As such, the development of image processing chains for both provided experience across a 

range of processing challenges, with applications to breast as well as dental imaging. 

 A.3 Tooth specimens used to develop image processing for sIOT  
 
 Images of extracted and de-identified human tooth specimens were used during the 

development of processing for sIOT. These specimens often contained caries, restorations, and 

fractures. A cadaveric mandible with an implant and a dental x-ray teaching and training replica 

(DXTTR) including cadaveric dentition as well as a ratcheting clamp to reproduce biting forces 

(Figure A.1C) were also imaged [Puett 2018c]. As much as possible, the tooth specimens were 

prepared so as to mimic the anatomic structures of the oral cavity. For example, specimens 

containing CAR were mounted between two other teeth in a plastic block using modeling clay 
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[Hilton 2019]. This model recreated interproximal spaces and approximated the attenuation of 

surrounding tissues. The fractures in the VRF specimens were induced using a steel wedge 

applied to decoronated premolars [Regan Anderson 2017]. The root canals were debrided, 

simulating an endodontic procedure, and some of the debrided canals were obturated with gutta-

percha using a single cone technique, so as to avoid the chance that any dense obturation 

material would infiltrate the fracture. The individual specimens were stabilized using rubber 

cement, which also replicated the periodontal ligament space, and were then mounted in plaster 

and crushed walnut shells to simulate alveolar bone and bone marrow spaces. When imaged, 

both specimen groups were positioned directly on the detector to reproduce the proximity 

achieved by an intraoral sensor location and then covered with 1-cm thick wax, simulating the 

soft-tissues of the cheek. Ground-truth knowledge of the dental pathology in these specimens 

was obtained by direct visualization, with sectioning of the tooth used to confirm the CAR 

lesions [Hilton 2019]. 

 
 
Figure A. 1. Pictures of the first-generation stationary intraoral tomosynthesis (sIOT) device, 
which has been installed in the clinic at The University of North Carolina at Chapel Hill School 
of Dentistry for human study. The articulating arm and compact size of the x-ray tube (A) were 
designed to be similar to standard dental imaging equipment. A custom connector (B) aligns the 
detector with the x-ray tube and maintains a fixed system geometry, as demonstrated during its 
application on a dental x-ray teaching and training replica (DXTTR), complete with cadaveric 
dentition and biting clamp (C). Figure adapted from [Puett 2018c]. 
 

B

A C
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A.4 Acquiring sIOT images and reconstructing the 3D image stack  
 
 The sIOT system was designed to fit into the typical workspace of a busy dental office. 

Constructed by Surround Medical Systems, Inc., the system has a wall-mounted x-ray tube that 

is positioned using an articulating arm (Figure A.1). The fixed and linear array of seven CNT-

enabled x-ray sources provided an angular span of 12o when positioned 40 cm from the intraoral 

detector. Previous work had characterized the performance of the first-generation sIOT device 

[Inscoe 2018]. The detector used for sIOT was a size 2 digital intraoral CMOS sensor [Handy 

HDR 600] with an active area of 1920 x 1440 pixels, each measuring 18.5µm. 

 The sIOT images were compared two commercially-available digital imaging systems, 

including an Instrumentarium Dental x-ray source combined with a Dentsply Sirona Schick 33 

CMOS intraoral sensor to image CAR specimens and a Preva DC x-ray source utilizing a 

Carestream RVG 6100 CMOS intraoral sensor to image the VRF specimens. Table A.1 

compares the operational parameters of these three systems. 

 
Table A. 1. Differences in the operational settings used by the standard dental x-ray equipment 
for bitewing and periapical imaging and stationary intraoral tomosynthesis (sIOT) during studies 
comparing the quality of their images. Imaging was directed at extracted tooth specimens 
containing caries adjacent to restorations (CAR) and vertical root fractures (VRF).  
 
 The information contained in the seven projection view images was used to reconstruct a 

3D image stack using a fan-volume adaptation of algebraic iteration (see 3.5.3d Reconstructing 

3D images from 2D projections). Figure A.2 provides representative image slices from the 

reconstructed 3D stack of a cadaveric mandible. 

CAR Imaging VRF Imaging
Bitewing 

Radiography sIOT Periapical 
Radiography sIOT

Tube Voltage (kV) 70 70 70 70

Tube Current (mA) 7 7 6 7

Exposure Time (ms) 80 100 160 50
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Figure A. 2. Example image slices of a cadaveric mandible selected from the reconstructed 3D 
stack generated by stationary intraoral tomosynthesis (sIOT). The complete stack included 45 
images, through which the reader would scroll to appreciate changes through depth. Figure 
adapted from [Puett 2018c]. 
 
A.5 Understanding and correcting dense-feature artifact in sIOT images 
 
A.5.1  Characterizing dense-feature artifact  
 
 Given the common presence of dense features in the oral cavity, most of the work 

characterizing dense-feature artifact and the development of processing to reduce it was carried 

out for sIOT (see A.2 3D dental imaging and the potential clinical value of the synthetic dental 

radiograph and 2.3.2 Carbon nanotube-enabled x-ray source arrays and stationary 

tomosynthesis) and then adapted for other imaging tasks. Metal artifact in reconstructed sIOT 

image slices appeared as a “shadow” extending off metal edges in the direction parallel to the 

linear x-ray source array (Figures A.3 and A.4) as well as “rippling” in out-of-plane 

reconstructed image slices [Puett 2018c]. Line profiles show the artifact at the boundary of the 

metal restoration to consist primarily of an overshoot followed by an undershoot, which is 

responsible for the shadowing (Figure A.3). 
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Figure A. 3. Characterizing artifact related to a metal restoration in the reconstructed image 
slices generated by stationary intraoral tomosynthesis (sIOT) as well as the effects of metal 
artifact reduction (MAR) through processing on image appearance. As demonstrated by the line 
profiles, MAR minimized the undershoot adjacent to the restoration edge. Figure adapted from 
[Puett 2018c]. 
 

The rounded and grooved implant-bone interface was less stark than the metal amalgam-

enamel interface. Line profiles across the implant-bone interface showed minimal initial 

overshoot but still contained undershoot (Figure A.4). The artifact masks this boundary, a critical 

region requiring visualization, given the clinical concern of bone resorption.  
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Figure A. 4. Characterizing artifact related to a metal implant in the reconstructed image slices 
generated by stationary intraoral tomosynthesis (sIOT) as well as the effects of metal artifact 
reduction (MAR) through processing on image appearance. As demonstrated by the line profiles, 
MAR decreased the undershoot adjacent to the implant (right), tending to return the profile to 
that of the central projection image (left). Figure adapted from [Puett 2018c]. 
 
A.5.2 Processing to minimize dense-feature artifact  
 
 The processing steps to achieve metal artifact reduction (MAR) in the reconstructed 

image slices required manipulating images at both the projection and reconstruction levels in the 

processing chain, using segmentation and registration steps. First, the metal signal was 

segmented from one set of projection images and replaced by pixel values generated through 

interpolation-based in-painting prior to reconstruction. The stack of reconstructed image slices 

was then registered to a corresponding stack of reconstructed images generated from the same 

projections in which the metal signal had not been removed. The segmentation step proved 

difficult, given the significant variability in pixel values within the image regions containing 

metal, especially at the critical metal-tissue interface. As such, simple thresholding was 

inadequate, and region-growing algorithms using seed-points identification from the histogram 
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were required to identify most metallic regions correctly in the projection images, while an 

active contours method was used to locate the metallic boundaries [Puett 2018c]. 

A.5.3 Assessing the potential clinical benefit of dense-feature artifact reduction 
 
 As line profiles demonstrate, MAR restored much of image region previously shadowed 

in the reconstructed image slice adjacent to the amalgam restoration and the metal implant 

(Figures A.3 and A.4). As such, features lost in the artifact became apparent after MAR. For 

example, the application of MAR improved the conspicuity of a carious lesion adjacent to an 

amalgam restoration (Figure A.5), suggesting a potential clinical benefit to its application.   

 
Figure A. 5. Example slices from the reconstructed stack of an extracted tooth specimen 
generated by stationary intraoral tomosynthesis (sIOT), demonstrating the effect of metal artifact 
reduction (MAR) through processing on the display of caries adjacent to restorations. Zooming 
into the image area adjacent to the metal restoration (red boxes) allows appreciation of the 
significant shadowing artifact. The shadowing was hiding a small region of decay, which was 
only apparent after MAR (blue arrow). Figure adapted from [Puett 2018c]. 
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A.6 Processing to generate multi-view synthetic dental radiographs 
 
 Although the information collected during an sIOT scan can be presented as a 

reconstructed 3D image stack, there are a host of potential benefits to generating and displaying 

the synthetic dental radiograph (see A.2 3D dental imaging and the potential clinical value of the 

synthetic dental radiograph). As with sDBT, synthetic dental radiography  

involves substantial image processing. However, the specific processing steps needed to generate 

the synthetic dental radiograph differed significantly from those developed for sDBT, reflecting 

the marked differences between these two anatomic environments as well as differences in the 

nature of the clinical questions being asked during breast and dental imaging. Understanding 

these differences and solving the processing challenges offered by them provided important 

lessons as the development of sDBT-based synthetic mammography and sIOT-based synthetic 

dental radiography evolved together.  

 The sIOT synthetic radiographs were generated by image processing chains that 

integrated the information available in the projection views and the reconstructed 3D image 

stack. Early experience with sIOT had demonstrated the value of displaying a set of synthetic 

images, each reflecting a different viewing angle, given the fact that a pathologic site may be 

conspicuous at one angle but quite difficult to detect at another angle [Puett 2020b]. As such, the 

processing chains for sIOT generated a set of multi-view synthetic images. This set included 

seven synthetic images, replicating the seven projection-view angles collected at the time of the 

scan. In this work, two different image processing chains were evaluated (Figure A.6). Each 

chain was optimized to display a pathology with quite different image characteristics. Caries are 

diffuse, lower-frequency image features, and since the processing step of reconstruction 

inherently emphasizes lower-frequency image components, caries lesions tend to be displayed 
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well in the reconstructed 3D image stack. Filtering was therefore used to enhance them prior to 

forward projection (Figure A.6A). However, fractures are high-frequency image features and 

therefore displayed best in the projection views prior to reconstruction. As such, filtering was 

used to isolate potentially-obscuring background features in the reconstructed image stack, which 

were subtracted prior to forward projection (Figure A.6B). In both cases, reconstruction was 

accomplished using a fan-volume adaptation of algebraic iteration customized to the unique 

geometry of the sIOT system. 

 

 
Figure A. 6. Schematic representations of the key steps in the image processing chains used to 
generate pathology-enhanced synthetic images from the information collected by stationary 
intraoral tomosynthesis (sIOT). Unique processing chains were developed for images containing 
caries (A) and fractures (B). 
 

Since the individual sIOT projection images were acquired at relatively low doses, the 

images tended to be noisier, requiring a bilateral filtering step in order equalize the appearance of 

the synthetic image to the standard radiograph. It is important to note that this final appearance of 

the synthetic image can be quite different from the original projection view from which it was 

generated.  Figure A.7 demonstrates this changing appearance as the information collected by 

sIOT of an obturated root specimen with a VRF is moved from the 2D projection level, through 

3D reconstruction, and then forward projected into the synthetic 2D radiograph.  
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Figure A. 7. Example images of a vertical root fracture (VRF) in an obturated root specimen 
generated by stationary intraoral tomosynthesis (sIOT), demonstrating the changing appearance 
of the image as it moves through the processing chain. Representative images have been selected 
from the set of projection views (A), reconstructed 3D stack (B), and multi-view set of synthetic 
radiographs (C). The single synthetic image (C) corresponds to the same projection view (A). 
The fracture (white arrow) is best displayed in the synthetic dental radiograph. Figure adapted 
from [Puett 2020b]. 
 
A.7 The utility of multi-view synthetic dental radiographs 
 
A.7.1  Minimizing artifact  
 
 The shadowing and ringing artifacts related to restorations (Figure A.8A) and obturation 

material (Figure A.8C) can be quite prominent. Minimizing these artifacts in the images 

generated by an sIOT study was a primary motivation for the development of the synthetic dental 

image. Comparing the appearance of a reconstructed image slice to the appearance of a synthetic 

radiograph generated from the same reconstructed 3D stack (Figures A.8B and A.8D) 

demonstrates the effectiveness of the image processing chain to minimize dense-feature artifact 

in the synthetic images.  
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Figure A. 8. Example image slices from reconstructed 3D stacks and synthetic radiographs 
generated by stationary intraoral tomosynthesis (sIOT). Note the shadowing and ringing artifact 
associated with highly-dense features, including the metal restoration (A) and gutta-percha 
obturation (C). These image slices can be compared to the synthetic images generated from the 
same reconstruction stack (B and D) to appreciate the extent to which synthetic radiography 
removes these artifacts.    
 
A.7.2  Seeing the interproximal space 
 
 Evaluating the contact area between adjacent teeth can be problematic, as tooth overlap 

and tissue superimposition is common in the standard 2D radiograph. By providing a set of 

multi-view synthetic images across an angle span, the sIOT system is more likely to provide a 

better view of the proximal tooth surfaces (Figure A.9), decreasing the need for additional 

imaging.   
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Figure A. 9. Example images comparing the synthetic radiographs generated by stationary 
intraoral tomosynthesis (sIOT) to standard dental radiographs of tooth specimens with 
restorations. The insets show the contact regions between teeth. This region can be obscured by 
overlapping structures in the standard radiograph (right and red). However, the multiple views 
provided by the set of synthetic radiographs (left and blue), which extends the viewing angles 
from -6° to +6° compared to the standard radiograph, can improve the chance of seeing the 
proximal surfaces well.  
 
A.7.3  Displaying caries adjacent to restorations  
 
 Figure A.10 provides a representative example of a set of multi-view synthetic 

radiographs of a CAR lesion. As can be appreciated, these synthetic images are free of most 

artifact and have a similar general appearance to a standard radiograph, thereby improving the 

efficiency of their review. Additionally, by integrating the information in the 3D image stack into 

a single image, the synthetic image tends to display the carious lesion better than the standard 

radiograph.    
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Figure A. 10. Example images comparing a set of multi-view synthetic radiographs generated by 
stationary intraoral tomosynthesis (sIOT) to the standard dental radiograph of a tooth specimen 
containing a caries lesion adjacent to a restoration. The synthetic sIOT images (left and blue) 
have a similar overall appearance to the standard radiograph, providing relatively artifact-free 
images, which display the caries adjacent to restoration (CAR) lesion compared to the better than 
the standard dental radiograph obtained at the same viewing angle (right and red).  
 
A.7.4  Displaying vertical root fractures  
 
 The set of multi-view synthetic radiographs of a non-obturated root specimen containing 

a VRF also includes seven images (Figure A.11). Demonstrating the value of access to a span of 

viewing perspectives, the VRF was best displayed in the synthetic radiographs representing a -6o 

viewing angle relative to the central projection. Similarly, identifying the fracture using standard 
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radiography also required collecting oblique perspectives. As such, compared to the single sIOT 

scan, multiple standard x-rays were needed to ensure that the same information was available. 

 

 
Figure A. 11. Example images comparing a set of multi-view synthetic radiographs generated by 
stationary intraoral tomosynthesis (sIOT) to standard dental radiographs of a non-obturated tooth 
root specimen with a vertical root fracture. The fracture was clearly displayed in the synthetic 
images generated from a single sIOT scan, particularly the -6° viewing angle (blue inset). For 
standard radiography, the x-ray source must be physically moved to acquire images from 
different angles. The fracture was best displayed in the standard radiograph acquired from a -20° 
viewing angle (red inset). Figure adapted from [Puett 2020b]. 
 
 A.8  Conclusions: Extending the concept of multi-view synthetic dental radiography 
 
 This dissertation work has explored the concept of displaying a set of synthetic images 

for interpretation. For breast imaging, generating multiple synthetic images provided an 

opportunity to maximize the display of diagnostically-important features with quite different 
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image characteristics (see 3.5.3e Forward projecting the 3D image space into synthetic 2D 

mammograms and 4.4 Incorporating synthetic mammography into sDBT). For dental imaging, 

employing different image processing chains to optimize the display of different pathologies also 

proved to be beneficial (see A.6 Processing to generate multi-view synthetic dental radiographs). 

However, in the case of dental imaging, presenting a set of synthetic images was valuable for 

another reason as well. It allowed for the display of different viewing perspectives (see A.7 The 

utility of multi-view synthetic dental radiographs). This ability to visualize potential pathology 

from different perspectives is critical in dental imaging. As such, the unique approaches of 

collecting dental information by sIOT combined with displaying this information as a set of 

multi-view synthetic radiographs is anticipated to have significant clinical value and forms the 

basis of a pending patent submission. 
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